[1] 单葆国, 孙祥栋, 李江涛, 等. 经济新常态下中国电力需求增长研判[J]. 中国电力, 2017, 50(1): 19–24 SHAN Baoguo, SUN Xiangdong, LI Jiangtao, et al. Analysis on the China's electricity demand growth under the new economic norm[J]. Electric Power, 2017, 50(1): 19–24 [2] 杨敏, 王宝, 叶彬, 等. 新常态下经济电力关系分析与用电需求预测[J]. 智慧电力, 2018, 46(4): 50–56 YANG Min, WANG Bao, YE Bin, et al. Study on relationship between economy and electricity & electricity demand forecasting under new normal[J]. Smart Power, 2018, 46(4): 50–56 [3] 国务院发展研究中心课题组. 迈向高质量发展: 战略与对策[M]. 北京: 中国发展出版社, 2017. [4] 夏翔, 谢颖捷, 方建亮, 等. 基于改进评价指标的电力需求预测模型研究[J]. 电网与清洁能源, 2021, 37(1): 62–67,76 XIA Xiang, XIE Yingjie, FANG Jianliang, et al. Research on electricity demand forecasting model based on improved evaluation index[J]. Power System and Clean Energy, 2021, 37(1): 62–67,76 [5] 王秋惠. 基于空间自回归模型的电力系统中长期负荷特性分析与预测[J]. 东北电力大学学报, 2021, 41(3): 118–123 WANG Qiuhui. The characteristic analysis and forecasting of mid-long term load based on spatial autoregressive model[J]. Journal of Northeast Electric Power University, 2021, 41(3): 118–123 [6] 袁小凯, 李果, 黄世平. 基于大数据技术的多变量短期电力需求预测研究[J]. 电网与清洁能源, 2020, 36(12): 30–34,40 YUAN Xiaokai, LI Guo, HUANG Shiping. Multi-variable short-term power demand forecasting research based on big data technology[J]. Power System and Clean Energy, 2020, 36(12): 30–34,40 [7] 刘洋. 一种基于大数据分析的电力客户服务需求预测方法[J]. 中国新技术新产品, 2020(23): 23–25 [8] . “十四五”电力规划工作启动[J]. 中国能源, 2020, 42(2): 4. [9] 张成龙, 谭显东, 翁玉艳, 等. “十三五”以来电力消费增长原因分析及中长期展望[J]. 中国电力, 2019, 52(8): 149–156 ZHANG Chenglong, TAN Xiandong, WENG Yuyan, et al. Research on the reasons of the growth of electricity consumption during the13 th five-year plan period and medium-and long-term perspective[J]. Electric Power, 2019, 52(8): 149–156 [10] 杜忠明, 王雪松. “十三五”中国电力需求水平预测[J]. 中国电力, 2017, 50(9): 11–17 DU Zhongming, WANG Xuesong. Electricity consumption forecasting of China during the period of the 13 th five-year[J]. Electric Power, 2017, 50(9): 11–17 [11] 刘曙光. 当前世界经济形势及中国的对策[J]. 理论学刊, 2019(6): 46–58 LIU Shuguang. The present world economic situation and China's countermeasures[J]. Theory Journal, 2019(6): 46–58 [12] 魏后凯, 年猛, 李玏. “十四五”时期中国区域发展战略与政策[J]. 中国工业经济, 2020(5): 5–22 WEI Houkai, NIAN Meng, LI Le. China's regional development strategy and policy during the 14 th five-year plan period[J]. China Industrial Economics, 2020(5): 5–22 [13] 秦宇, 李钢. 新冠肺炎疫情对中国经济挑战与影响的调查综述[J]. 区域经济评论, 2020(3): 146–156 QIN Yu, LI Gang. Study on the impact on China's economy from the novel coronavirus pneumonia based on the perspective of questionnaire analysis[J]. Regional Economic Review, 2020(3): 146–156 [14] 单葆国, 吴姗姗, 李江涛. 新冠疫情对2020年电力需求影响及应对之策[J]. 中国电力企业管理, 2020(4): 28–29 [15] 刘青, 吴陈锐, 张春成, 等. 新冠肺炎疫情对2020年电力消费影响及趋势研究[J]. 中国电力, 2020, 53(12): 248–257 LIU Qing, WU Chenrui, ZHANG Chuncheng, et al. Impact of COVID-19 on China's total electricity consumption in 2020 and its trend[J]. Electric Power, 2020, 53(12): 248–257 [16] 李晓. 中美贸易失衡与特朗普发动贸易战的目的[J]. 南开学报(哲学社会科学版), 2018(3): 5–8 [17] 陈钢, 薛莉. 中美贸易摩擦研究综述: 成因、影响及对策[J]. 中共南京市委党校学报, 2020(1): 59–65 CHEN Gang, XUE Li. A review of Sino-US trade frictions: causes, impacts and countermeasures[J]. Journal of Party School of Nanjing Municipal Committee of CPC, 2020(1): 59–65 [18] 沈学恩. 中美贸易争端的动因及应对策略[J]. 现代营销(经营版), 2019(9): 66–67 [19] 孙敏娴. 浅谈中美新能源贸易现状与前景[J]. 中国集体经济, 2020(5): 10–11 [20] 中国社会科学院宏观经济研究中心课题组. 未来15年中国经济增长潜力与“十四五”时期经济社会发展主要目标及指标研究[J]. 中国工业经济, 2020(4): 5–22 Research Group of the Macroeconomic Research Center of the CASS. Research on the potential growth of the Chineses economy in the next 15 years and the main goals and indicators of economic and social development during the 14 th five-year plan period[J]. China Industrial Economics, 2020(4): 5–22 [21] 孙毅, 周爽, 单葆国, 等. 多情景下的电能替代潜力分析[J]. 电网技术, 2017, 41(1): 118–123 SUN Yi, ZHOU Shuang, SHAN Baoguo, et al. Analysis of electric power alternative potential under multi-scenario[J]. Power System Technology, 2017, 41(1): 118–123 [22] 段金辉, 单葆国, 刘小聪, 等. 电能替代主要影响因素研究[J]. 中国电力企业管理, 2018(19): 54–56 [23] 刘燕飞, 周晖, 郁灿, 等. 基于智慧城市产业重构的中长期电力需求预测[J]. 水电能源科学, 2017, 35(12): 204–207 LIU Yanfei, ZHOU Hui, YU Can, et al. Medium and long term electricity demand forecasting based on smart city industry restructuring[J]. Water Resources and Power, 2017, 35(12): 204–207 [24] 温珏. 基于改进人工鱼群算法优化参数的支持向量机研究: 中长期电力需求预测应用[J]. 软件导刊, 2018, 17(3): 183–186 WEN Jue. Parameter optimization for support vector machine based on improved artificial fish swarm algorithm—mid-and-long term power demand forecasting[J]. Software Guide, 2018, 17(3): 183–186 [25] 黎欢, 沈巍. 基于RBF模型的电力需求预测方法优化[J]. 现代经济信息, 2017(12): 324–325 [26] 丁业豪, 麦琪. 电力市场用电量需求分析预测模型研究[J]. 电测与仪表, 2017, 54(14): 14–23 DING Yehao, MAI Qi. Research on power market electricity demand analysis and forecasting model[J]. Electrical Measurement & Instrumentation, 2017, 54(14): 14–23 [27] 董朝武, 白江红, 汪鸿, 等. 基于容量利用特征的行业售电量预测方法研究[J]. 电力系统保护与控制, 2018, 46(1): 103–109 DONG Chaowu, BAI Jianghong, WANG Hong, et al. Research of industry electricity sales forecasting method based on capacity utilization characteristics[J]. Power System Protection and Control, 2018, 46(1): 103–109
|