Electric Power ›› 2024, Vol. 57 ›› Issue (8): 36-45.DOI: 10.11930/j.issn.1004-9649.202310099
• Power System Flexibility Improvement Technology Based on Hydrogen Energy • Previous Articles Next Articles
Zhuan ZHOU1(), Shuai MIAO2(
), Tiejiang YUAN2(
)
Received:
2023-10-31
Accepted:
2024-01-29
Online:
2024-08-23
Published:
2024-08-28
Supported by:
Zhuan ZHOU, Shuai MIAO, Tiejiang YUAN. System Dynamics Modeling of Green Hydrogen Steel Smelting to Improve Wind Power Consumption[J]. Electric Power, 2024, 57(8): 36-45.
参数 | 初始值 | 参数 | 初始值 | |||
地区生产总值/亿元 | 加工废钢率/% | 4.5 | ||||
总人口/万人 | 绿氢成本/(元·kg–1) | 29.9 | ||||
生铁产量/万t | 849.92 | 绿氢价格/(元·kg–1) | 53 | |||
粗钢产量/万t | 868.37 | 电解效率/% | 65 | |||
钢材产量/万t | 电解槽年利用小时数/h | |||||
人均饱和水平/(t·人–1) | 12 | 上网电价/(元·(kW·h)–1) | 0.25 | |||
税率/% | 15 | 风力发电量/(亿kW·h) | 220 | |||
自产废钢率/% | 4.25 | 风电年利用小时数/h |
Table 1 Key parameter settings
参数 | 初始值 | 参数 | 初始值 | |||
地区生产总值/亿元 | 加工废钢率/% | 4.5 | ||||
总人口/万人 | 绿氢成本/(元·kg–1) | 29.9 | ||||
生铁产量/万t | 849.92 | 绿氢价格/(元·kg–1) | 53 | |||
粗钢产量/万t | 868.37 | 电解效率/% | 65 | |||
钢材产量/万t | 电解槽年利用小时数/h | |||||
人均饱和水平/(t·人–1) | 12 | 上网电价/(元·(kW·h)–1) | 0.25 | |||
税率/% | 15 | 风力发电量/(亿kW·h) | 220 | |||
自产废钢率/% | 4.25 | 风电年利用小时数/h |
年份 | 地区生产总值 | 钢材产量 | 风力发电量 | |||||||||||||||
真实值/亿元 | 模拟值/亿元 | 相对误差/% | 真实值/万t | 模拟值/万t | 相对误差/% | 真实值/(亿kW·h) | 模拟值/(亿kW·h) | 相对误差/% | ||||||||||
2016 | 0 | 0 | 220.00 | 221.50 | 0.68 | |||||||||||||
2017 | 0.13 | 0.71 | 312.70 | 318.35 | 1.81 | |||||||||||||
2018 | 0.29 | 1.31 | 360.26 | 370.60 | 2.87 | |||||||||||||
2019 | 1.24 | 1.05 | 407.16 | 425.35 | 4.47 | |||||||||||||
2020 | 3.42 | 2.71 | 435.60 | 453.51 | 4.11 | |||||||||||||
2021 | 1.95 | 0.52 | 503.60 | 515.75 | 2.41 |
Table 2 Model test results
年份 | 地区生产总值 | 钢材产量 | 风力发电量 | |||||||||||||||
真实值/亿元 | 模拟值/亿元 | 相对误差/% | 真实值/万t | 模拟值/万t | 相对误差/% | 真实值/(亿kW·h) | 模拟值/(亿kW·h) | 相对误差/% | ||||||||||
2016 | 0 | 0 | 220.00 | 221.50 | 0.68 | |||||||||||||
2017 | 0.13 | 0.71 | 312.70 | 318.35 | 1.81 | |||||||||||||
2018 | 0.29 | 1.31 | 360.26 | 370.60 | 2.87 | |||||||||||||
2019 | 1.24 | 1.05 | 407.16 | 425.35 | 4.47 | |||||||||||||
2020 | 3.42 | 2.71 | 435.60 | 453.51 | 4.11 | |||||||||||||
2021 | 1.95 | 0.52 | 503.60 | 515.75 | 2.41 |
1 | 李晖, 刘栋, 姚丹阳. 面向碳达峰碳中和目标的我国电力系统发展研判[J]. 中国电机工程学报, 2021, 41 (18): 6245- 6258. |
LI Hui, LIU Dong, YAO Danyang. Analysis and reflection on the development of power system towards the goal of carbon emission peak and carbon neutrality[J]. Proceedings of the CSEE, 2021, 41 (18): 6245- 6258. | |
2 | 李晨光, 王帅, 郭雨蕙. 碳中和背景下钢铁行业低碳转型发展政策工具与路径分析: 基于动态CGE模型的模拟研究[J]. 经济问题探索, 2023, (1): 34- 59. |
LI Chenguang, WANG Shuai, GUO Yuhui. Analysis of policy tools and pathways for low-carbon transformation development of iron and steel industry—a simulation study based on dynamic CGE model[J]. Inquiry into Economic Issues, 2023, (1): 34- 59. | |
3 |
TANG J, CHU M S, LI F, et al. Development and progress on hydrogen metallurgy[J]. International Journal of Minerals, Metallurgy and Materials, 2020, 27 (6): 713- 723.
DOI |
4 |
ABDUL QUADER M, AHMED S, DAWAL S Z, et al. Present needs, recent progress and future trends of energy-efficient ultra-low carbon dioxide (CO2) steelmaking (ULCOS) program[J]. Renewable and Sustainable Energy Reviews, 2016, 55, 537- 549.
DOI |
5 | 吴耀光, 肖步庆, 朱立光, 等. 电炉炼钢钢铁原料的现状分析与展望[J]. 钢铁, 2021, 56 (11): 55- 62. |
WU Yaoguang, XIAO Buqing, ZHU Liguang, et al. Current situation analysis and prospect of iron and steel raw material for electric arc furnace steelmaking[J]. Iron & Steel, 2021, 56 (11): 55- 62. | |
6 |
PATISSON F, MIRGAUX O. Hydrogen ironmaking: how it works[J]. Metals, 2020, 10 (7): 922.
DOI |
7 | 李海峰, 陈靖然, 王新东, 等. 面向长流程的富氢低碳炼铁技术路径分析[J]. 钢铁, 2023, 58 (10): 1- 11. |
LI Haifeng, CHEN Jingran, WANG Xindong, et al. Technical pathway analysis for low-carbon ironmaking with hydrogen-rich towards long-process[J]. Iron & Steel, 2023, 58 (10): 1- 11. | |
8 |
LOPEZ G, FARFAN J, BREYER C. Trends in the global steel industry: evolutionary projections and defossilisation pathways through power-to-steel[J]. Journal of Cleaner Production, 2022, 375, 134182.
DOI |
9 |
LI F, CHU M S, TANG J, et al. Thermodynamic performance analysis and environmental impact assessment of an integrated system for hydrogen generation and steelmaking[J]. Energy, 2022, 241, 122922.
DOI |
10 |
CHANG Y F, WAN F, YAO X L, et al. Influence of hydrogen production on the CO2 emissions reduction of hydrogen metallurgy transformation in iron and steel industry[J]. Energy Reports, 2023, 9, 3057- 3071.
DOI |
11 | 彭光博, 向月, 陈文溆乐, 等. “双碳” 目标下电力系统风电装机与投资发展动力学推演及分析[J]. 电力自动化设备, 2022, 42 (11): 70- 77. |
PENG Guangbo, XIANG Yue, CHEN Wenxule, et al. Kinetic deduction and analysis of installed capacity and investment development for wind power in power system under "dual carbon" target[J]. Electric Power Automation Equipment, 2022, 42 (11): 70- 77. | |
12 |
刘桢, 林璐, 蒋旭, 等. 基于系统动力学的售电渠道评价管理研究[J]. 电力系统保护与控制, 2019, 47 (11): 165- 172.
DOI |
LIU Zhen, LIN Lu, JIANG Xu, et al. Research of electricity selling channels' evaluation and management based on system dynamics[J]. Power System Protection and Control, 2019, 47 (11): 165- 172.
DOI |
|
13 | 张金良, 周秀秀. 基于系统动力学的发电行业市场型碳减排政策影响分析[J]. 中国电力, 2020, 53 (6): 114- 123. |
ZHANG Jinliang, ZHOU Xiuxiu. Impact analysis of market-driented carbon emission reduction policies in power generation industry based on system dynamics[J]. Electric Power, 2020, 53 (6): 114- 123. | |
14 | 张超, 王韬, 陈伟强, 等. 中国钢铁长期需求模拟及产能过剩态势评估[J]. 中国人口·资源与环境, 2018, 28 (10): 169- 176. |
ZHANG Chao, WANG Tao, CHEN Weiqiang, et al. Simulation of China's long-term steel demand and evaluation of the trend of overcapacity of steel industry[J]. China Population, Resources and Environment, 2018, 28 (10): 169- 176. | |
15 |
袁家海, 牟琪林, 许传博, 等. 基于系统动力学的中国绿氢产业发展政策仿真[J]. 中国人口·资源与环境, 2023, 33 (6): 49- 58.
DOI |
YUAN Jiahai, MU Qilin, XU Chuanbo, et al. Simulation study on the development policy of China's green hydrogen industry based on system dynamics[J]. China Population, Resources and Environment, 2023, 33 (6): 49- 58.
DOI |
|
16 | 孙盛鹏, 刘凤良, 薛松. 需求侧资源促进可再生能源消纳贡献度综合评价体系[J]. 电力自动化设备, 2015, 35 (4): 77- 83. |
SUN Shengpeng, LIU Fengliang, XUE Song. Comprehensive evaluation system for contribution degree of demand-side resources to renewable energy source integration[J]. Electric Power Automation Equipment, 2015, 35 (4): 77- 83. | |
17 | 崔志峰, 上官方钦, 王方杰, 等. 2022—2060年中国废钢资源量分析预测[J]. 钢铁, 2023, 58 (6): 126- 133. |
CUI Zhifeng, SHANGGUAN Fangqin, WANG Fangjie, et al. Analysis and prediction of scrap resources in China from 2022 to 2060[J]. Iron & Steel, 2023, 58 (6): 126- 133. | |
18 |
邹才能, 李建明, 张茜, 等. 氢能工业现状、技术进展、挑战及前景[J]. 天然气工业, 2022, 42 (4): 1- 20.
DOI |
ZOU Caineng, LI Jianming, ZHANG Xi, et al. Industrial status, technological progress, challenges and prospects of hydrogen energy[J]. Natural Gas Industry, 2022, 42 (4): 1- 20.
DOI |
|
19 | 崔杨, 曾鹏, 仲悟之, 等. 考虑阶梯式碳交易的电-气-热综合能源系统低碳经济调度[J]. 电力自动化设备, 2021, 41 (3): 10- 17. |
CUI Yang, ZENG Peng, ZHONG Wuzhi, et al. Low-carbon economic dispatch of electricity-gas-heat integrated energy system based on ladder-type carbon trading[J]. Electric Power Automation Equipment, 2021, 41 (3): 10- 17. | |
20 | 刘雨佳, 樊艳芳, 郝俊伟, 等. 基于碱性电解槽宽功率适应模型的风光氢热虚拟电厂容量配置与调度优化[J]. 电力系统保护与控制, 2022, 50 (10): 48- 60. |
LIU Yujia, FAN Yanfang, HAO Junwei, et al. Capacity configuration and optimal scheduling of a wind-photovoltaic-hydrogen-thermal virtual power plant based on a wide range power adaptation strategy for an alkaline electrolyzer[J]. Power System Protection and Control, 2022, 50 (10): 48- 60. | |
21 | 王晓理, 章帆, 杨凤志, 等. 基于平价上网的风电场经济性分析[J]. 船舶工程, 2022, 44 (S2): 149- 155. |
WANG Xiaoli, ZHANG Fan, YANG Fengzhi, et al. Economic analysis of wind farms based on grid parity[J]. Ship Engineering, 2022, 44 (S2): 149- 155. | |
22 | 翁幸, 王继慷, 王一, 等. 基于多端口直流变压器的氢燃料电池-储能协调控制策略[J]. 南方电网技术, 2024, 18 (6): 98- 111. |
WENG Xing, WANG Jikang, WANG Yi, et al. Coordinated control strategy of hydrogen fuel cell-energy storage based on multi-port DC transformer[J]. Southern Power System Technology, 2024, 18 (6): 98- 111. | |
23 | 颜玉林, 张籍, 刘洋, 等. 基于一体式再生燃料电池的并网型微电网系统建模及分析[J]. 广东电力, 2023, 36 (9): 43- 50. |
YAN Yulin, ZHANG Ji, LIU Yang, et al. Modeling and analysis of grid-connected microgrid system based on unitized regenerative fuel cells[J]. Guangdong Electric Power, 2023, 36 (9): 43- 50. | |
24 | 宋天琦, 马韵婷, 张智慧. 光伏耦合电解水制氢系统作为虚拟电厂资源的运行模式与经济性分析[J]. 发电技术, 2023, 44 (4): 465- 472. |
SONG Tianqi, MA Yunting, ZHANG Zhihui. Operation mode and economy of photovoltaic coupled water electrolysis hydrogen production system As a kind of virtual power plant resource[J]. Power Generation Technology, 2023, 44 (4): 465- 472. | |
25 | 滕越, 赵骞, 袁铁江, 等. 绿电-氢能-多域应用耦合网络关键技术现状及展望[J]. 发电技术, 2023, 44 (3): 318- 330. |
TENG Yue, ZHAO Qian, YUAN Tiejiang, et al. Key technology status and outlook for green electricity-hydrogen energy-multi-domain applications coupled network[J]. Power Generation Technology, 2023, 44 (3): 318- 330. | |
26 | 余莎, 何光层, 刘志坚, 等. 含碳捕集的电-气综合能源系统低碳经济调度[J]. 广东电力, 2022, 35 (2): 74- 82. |
YU Sha, HE Guangceng, LIU Zhijian, et al. Low-carbon economic dispatch of integrated electricity-gas energy system with carbon capture[J]. Guangdong Electric Power, 2022, 35 (2): 74- 82. | |
27 | 胡轶坤, 曹军文, 张文强, 等. 高温固体氧化物电解池应用研究进展[J]. 发电技术, 2023, 44 (3): 361- 372. |
HU Yikun, CAO Junwen, ZHANG Wenqiang, et al. Application research progress of high temperature solid oxide electrolysis cell[J]. Power Generation Technology, 2023, 44 (3): 361- 372. |
[1] | Rui ZHU, Qihe LOU, Xiaoling JIN, Chang LIU. Evolution of Functional Investment Structure of Power Grid Infrastructure Suitable for New Power System [J]. Electric Power, 2024, 57(9): 194-204. |
[2] | WANG Nan, ZHANG Chen, HE Xudao, YANG Yuwei, CHEN Lian, LIU Hao, WANG Chenchen, JIANG Xudong, YE Cheng. Optimization of Active Heat Storage in Heat-Supply Network Considering Curtailed Wind Power Consumption [J]. Electric Power, 2023, 56(2): 114-122. |
[3] | Tiejiang YUAN, Yijin ZHANG, Zijuan YANG, Dongfang JIANG. Medium and Long-Term Hydrogen Load Prediction Based on System Dynamics [J]. Electric Power, 2023, 56(10): 11-21. |
[4] | HUANG Chang, YAN Yixian, BAI Yao, ZHANG Qi, WANG Weiliang, LI Wenna. Performance Analysis of Solar-Coal Cogeneration System for Wind Power Consumption [J]. Electric Power, 2022, 55(5): 182-188. |
[5] | YANG Kun, SUN Lei, FANG Chaoyun, ZHANG Yi. Hybrid Power Generation System to Promote New Energy Consumption [J]. Electric Power, 2022, 55(2): 145-151. |
[6] | ZHOU Renjun, DENG Ziang, XU Jian, ZHU Jiangsheng, WANG Yangzhi. Optimized Operation Using Carbon Recycling for Benefit of Virtual Power Plant with Carbon Capture and Gas Thermal Power [J]. Electric Power, 2020, 53(9): 166-171. |
[7] | ZHANG Jinliang, ZHOU Xiuxiu. Impact Analysis of Market-Driented Carbon Emission Reduction Policies in Power Generation Industry Based on System Dynamics [J]. Electric Power, 2020, 53(6): 114-123. |
[8] | DU Zhendong, XU Erfeng, ZHANG Xiaodi, LIU Dunnan, SHEN Shuyi. Research on Evolution and Development of Power Generation Scale and Cost under Tradable Green Certificates Market in China [J]. Electric Power, 2019, 52(7): 168-176. |
[9] | DONG Fugui, WU Nannan, YAO Jun, LI Hujun, BAI Hongkun, JIN Chunxu. Study on Evolutionary Game Model of Thermal Power Regulation in Large-scale Wind Power Grid Integration [J]. Electric Power, 2018, 51(9): 151-157. |
[10] | CHEN Rongjun, HE Yongxiu, CHEN Fenkai, DONG Mingyu, LI Dezhi, GUANG Fengtao. Long-term Daily Load Forecast of Electric Vehicle Based on System Dynamics and Monte Carlo Simulation [J]. Electric Power, 2018, 51(9): 126-134. |
[11] | WANG Xuanyuan, MA Li, QU Haoyuan. Market Mechanisms for Wind Generation in ERCOT Market and the Inspiration for China [J]. Electric Power, 2017, 50(7): 10-18. |
[12] | WANG Cai-xia, LI Qiong-hui, XIE Guo-hui. Pricing Mechanism and Economic Analysis of Heating Supply by Wind Power [J]. Electric Power, 2014, 47(10): 156-160. |
[13] | XIE Guo-hui, FAN Hao. Analysis on the Situations and Reasons of Wind Power Operation and Consumption in Northeast China [J]. Electric Power, 2014, 47(10): 152-155. |
[14] | ZHANG Qin, XIN Song-xu, BAI Jian-hua, LIN Qi-wei. Study of Ancillary Service Market Mechanism for the Promotion of Wind Power Consumption in Northwest Region [J]. Electric Power, 2013, 46(7): 111-115. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||