Electric Power ›› 2021, Vol. 54 ›› Issue (3): 109-116.DOI: 10.11930/j.issn.1004-9649.202003086
Previous Articles Next Articles
ZHANG Xu, XU Yonghai, LIU Ziteng, JIANG Haiwei, TAO Shun
Received:2020-03-15
Revised:2020-05-20
Online:2021-03-17
Published:2021-03-05
Supported by:ZHANG Xu, XU Yonghai, LIU Ziteng, JIANG Haiwei, TAO Shun. A Method for Assessing Harmonic Emission Level of Photovoltaic Access Point Considering System-Side Harmonic Voltage Fluctuations[J]. Electric Power, 2021, 54(3): 109-116.
| [1] JAIN S K, SINGH S N. Fast harmonic estimation of stationary and time-varying signals using EA-AWNN[J]. IEEE Transactions on Instrumentation and Measurement, 2013, 62(2): 335-343. [2] MORADIFAR A, AKBARI FOROUD A, GORGANI FIROUZJAH K. Intelligent localisation of multiple non-linear loads considering impact of harmonic state estimation accuracy[J]. IET Generation, Transmission & Distribution, 2017, 11(8): 1943-1953. [3] 席晓林, 吴杰, 王宁, 等. 交直流混合微电网中关于纹波的研究[J]. 电力科学与技术学报, 2020, 35(6): 76-82 XI Xiaolin, WU Jie, WANG Ning, et al. Research on ripple in AC/DC hybrid microgrid[J]. Journal of Electric Power Science and Technology, 2020, 35(6): 76-82 [4] 朱武, 刘雅娟. 大型光伏电站谐波谐振机理研究[J]. 中国电力, 2018, 51(3): 121-130 ZHU Wu, LIU Yajuan. Harmonic resonance mechanism study of large-scale photovoltaic power plants[J]. Electric Power, 2018, 51(3): 121-130 [5] 魏伟. 配电网中谐波源检测与谐波发射水平评估研究[D]. 合肥: 合肥工业大学, 2018. WEI Wei. Detection of harmonic source and evaluation of harmonic emission level in distribution network[D]. Hefei: Hefei University of Technology, 2018. [6] 邱思语, 杨洪耕. 基于泛正态阻抗云的谐波发射水平估计[J]. 电测与仪表, 2016, 53(15): 89-94,100 QIU Siyu, YANG Honggeng. Assessment method of harmonic emission level based on pan-normal harmonic impedance cloud[J]. Electrical Measurement & Instrumentation, 2016, 53(15): 89-94,100 [7] 张华赢, 朱明星, 时亨通, 等. 对称性和波动性约束的居民负荷谐波发射水平评估[J]. 中国电力, 2020, 53(11): 60-68 ZHANG Huaying, ZHU Mingxing, SHI Hengtong, et al. Assessment on harmonic emission level of residential loads with symmetry and volatility constraints[J]. Electric Power, 2020, 53(11): 60-68 [8] 王攸然, 张逸, 邵振国, 等. 谐波责任划分研究现状及在分布式电源并网条件下的展望[J]. 电工电能新技术, 2019, 38(1): 61-69 WANG Youran, ZHANG Yi, SHAO Zhenguo, et al. Current status of harmonic responsibility division and prospects under grid-connected distributed generations condition[J]. Advanced Technology of Electrical Engineering and Energy, 2019, 38(1): 61-69 [9] 郑涛, 黄予园, 宗伟, 等. 光伏并网系统故障二次谐波产生机理及其对变压器保护的影响[J]. 电力系统保护与控制, 2020, 48(12): 13-22 ZHENG Tao, HUANG Yuyuan, ZONG Wei,et al. Second harmonic generation mechanism of a photovoltaic grid-connected system fault and its influence on transformer protection[J]. Power System Protection and Control, 2020, 48(12): 13-22 [10] 严干贵, 常青云, 黄亚峰, 等. 弱电网接入下多光伏逆变器并联运行特性分析[J]. 电网技术, 2014, 38(4): 933-940 YAN Gangui, CHANG Qingyun, HUANG Yafeng, et al. Analysis on parallel operational characteristics of multi photovoltaic inverters connected to weak-structured power system[J]. Power System Technology, 2014, 38(4): 933-940 [11] 张巍, 杨洪耕. 基于二元线性回归的谐波发射水平估计方法[J]. 中国电机工程学报, 2004(6): 50-53 ZHANG Wei, YANG Honggeng. A method for assessing harmonic emission level based on binary linear regression[J]. Proceedings of the CSEE, 2004(6): 50-53 [12] 黄舜, 徐永海. 基于偏最小二乘回归的系统谐波阻抗与谐波发射水平的评估方法[J]. 中国电机工程学报, 2007(1): 93-97 HUANG Shun, XU Yonghai. Assessing harmonic impedance and the harmonic emission level based on partial least-squares regression method[J]. Proceedings of the CSEE, 2007(1): 93-97 [13] YANG H, PIROTTE P, ROBERT A. Harmonic emission levels of industrial loads statistical assessment[C]// CIGRE Proceedings. Paris: International Council on Large Electric Systems, 1996: 36-306. [14] 王诗超, 沈沉, 李洋, 等. 基于波动量法的系统侧谐波阻抗幅值估计精度评价方法[J]. 电网技术, 2012, 36(5): 145-149 WANG Shichao, SHEN Chen, LI Yang, et al. A fluctuation quantity based method to evaluate estimation precision of harmonic impedance amplitude at system side[J]. Power System Technology, 2012, 36(5): 145-149 [15] 林顺富, 李扬, 汤波, 等. 基于改进FastICA及偏最小二乘法的系统谐波阻抗估计[J]. 电网技术, 2018, 42(1): 308-314 LIN Shunfu, LI Yang, TANG Bo, et al. System harmonic impedance estimation based on improved fast ICA and partial least squares[J]. Power System Technology, 2018, 42(1): 308-314 [16] 贾秀芳, 华回春, 曹东升, 等. 基于复线性最小二乘法的谐波责任定量划分[J]. 中国电机工程学报, 2013, 33(4): 149-155, 20 JIA Xiufang, HUA Huichun, CAO Dongsheng, et al. Determining harmonic contributions based on complex least squares method[J]. Proceedings of the CSEE, 2013, 33(4): 149-155, 20 [17] 谭鹏, 杨洪耕, 马晓阳, 等. 计及风电场侧谐波阻抗影响的谐波发射水平评估[J]. 电力自动化设备, 2019, 39(4): 167-173 TAN Peng, YANG Honggeng, MA Xiaoyang, et al. Assessment of harmonic emission level considering influence of harmonic impedance of wind farm[J]. Electric Power Automation Equipment, 2019, 39(4): 167-173 [18] 龚华麟, 肖先勇, 刘亚梅, 等. 基于主导波动量筛选原理的用户谐波发射水平估计方法[J]. 中国电机工程学报, 2010, 30(4): 22-27 GONG Hualin, XIAO Xianyong, LIU Yamei, et al. A method for assessing customer harmonic emission level based on the dominant fluctuation filtering principle[J]. Proceedings of the CSEE, 2010, 30(4): 22-27 [19] 汤波, 林顺富, 陈光, 等. 居民配电网负荷谐波电流发射水平评估方法[J]. 电工技术学报, 2018, 33(3): 533-542 TANG Bo, LIN Shunfu, CHEN Guang, et al. The harmonic current emission level of the residential loads in the distribution network[J]. Transactions of China Electrotechnical Society, 2018, 33(3): 533-542 [20] 陈静, 符玲, 臧天磊, 等. 考虑背景谐波波动的谐波责任划分方法[J]. 电力自动化设备, 2016, 36(5): 61-66 CHEN Jing, FU Ling, ZANG Tianlei, et al. Harmonic responsibility determination considering background harmonic fluctuation[J]. Electric Power Automation Equipment, 2016, 36(5): 61-66 [21] 曾雅文. 并网光伏电站仿真建模及逆变器群控方法研究[D]. 北京: 华北电力大学, 2013. ZENG Yawen. Modeling of grid-connected photovoltaic power plant and research on cluster control of inverter[D]. Beijing: North China Electric Power University, 2013. |
| [1] | LIU Han, LIU Jindong, LI He, LI Yanli, YU Qiyuan, ZHAO Yuan, GENG Yanan. Leakage Fault Identification of PV-Integrated Distribution Networks Based on CEEMDAN and NRBO-XGBoost [J]. Electric Power, 2025, 58(9): 23-32. |
| [2] | XIAO Xiangqi, DENG Hanjun, ZOU Sheng, XIAO Jianhong, LI Kai, MA Bin. Virtual Inertia Flexible Control of Photovoltaic Storage VSG Based on AHFS and RBF [J]. Electric Power, 2025, 58(9): 33-43. |
| [3] | ZHANG Dingqu, QIAN Bin, YANG Lu, CHEN Feng, LUO Yi. Data Driven Analysis and Control of Power System Security and Stability [J]. Electric Power, 2025, 58(8): 156-163. |
| [4] | ZHAO Lin, GUO Shangmin, SHANG Wenying, DONG Jian, WANG Wei. Configuration Optimization of Renewable Energy Systems Based on FDOA [J]. Electric Power, 2025, 58(7): 168-176. |
| [5] | LIU Junhui, GONG Jian, TONG Bingshen, LI Songjie, ZHANG Yihan, CUI Shichang, TIAN Chunzheng, ZHANG Yongbin. Coordinated Optimization Method for Virtual Power Plants and Distribution Networks Considering Distributed Energy Storage and Photovoltaics [J]. Electric Power, 2025, 58(6): 1-9. |
| [6] | WANG Fangmin, XU Jiayu, SU Ning, NIU Huanna, YUAN Jiaxing, MEN Panlong. Probability Evaluation Method of Distributed Photovoltaic Carrying Capacity under Risk Suppression in New Power System [J]. Electric Power, 2025, 58(6): 33-44. |
| [7] | WEI Wei, YU He, YE Li, WANG Yingchun. Low Voltage Substation Photovoltaic Ultra Short Term Power Prediction Method Based on FCM-SENet-TCN [J]. Electric Power, 2025, 58(6): 172-179. |
| [8] | GUI Qianjin, XU Wenfa, LI Xiaoyang, LUO Lirong, YE Haifeng, WANG Zhengfeng. Ultra-Short-Term Photovoltaic Power Interval Forecasting Based on Time-Series Decomposition and Conformal Quantile Regression [J]. Electric Power, 2025, 58(5): 21-32. |
| [9] | Pengcheng PAN, Wenshun HAN, Xueli GUO. Resonance Suppression of Photovoltaic DC Boost Collection System Based on Active and Passive Damping Cooperative Control [J]. Electric Power, 2025, 58(3): 20-30. |
| [10] | Jiandong WO, Wulue PAN, Yuehui LI, Jiayi WU. New Solution for Photovoltaic Station Collector Line Protection Based on Comprehensive Harmonic Drive [J]. Electric Power, 2025, 58(2): 133-139. |
| [11] | Tong SUN, Shenxi ZHANG, Yi CAO, Jiachen CAO, Haozhong CHENG. Robust Optimization of Hosting Capacity of Distributed Photovoltaics in Distribution Network Considering Adjustable Characteristics of 5G Base Station [J]. Electric Power, 2025, 58(2): 140-146. |
| [12] | LIAO Jiaqi, YU Ruoying, YE Rongbo, XIONG Junjie, XIA Junrong. Coordinated Control Method for Low-Voltage Distribution Networks with High-Penetration Residential Photovoltaic [J]. Electric Power, 2025, 58(10): 110-120, 135. |
| [13] | QI Huanruo, CHEN Chen, GUO Fang, XUE Wenjie, YAN Xiangyang, KANG Yilong, LIU Juncheng, MA Siyuan. Multi-objective Bi-level Planning Model for Distribution Network Energy Storage Considering Refined Charging/Discharging and Carbon Benefits [J]. Electric Power, 2025, 58(10): 121-135. |
| [14] | WANG Deshun, LEI Jie, HU Anping, WANG Bing, FENG Xinzhen, WANG Zhihui. Siting and Sizing of Distributed Generation in Distribution Transformer Areas Using Multi-objective Bi-level Optimization [J]. Electric Power, 2025, 58(10): 136-146. |
| [15] | WANG Zezhou, MAO Linming, PAN Keqin, CHU Jianxin, CHEN Gang. Affine Power Flow Calculation Method for Low-voltage Distribution Systems Considering the Uncertainty of Distributed Photovoltaic Output [J]. Electric Power, 2025, 58(10): 188-194. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
