Electric Power ›› 2025, Vol. 58 ›› Issue (9): 23-32.DOI: 10.11930/j.issn.1004-9649.202501003
• Key Technologies for Enhancing the Grid Connection Safety Capability of New Energy and New Grid-Connected Entities • Previous Articles Next Articles
					
													LIU Han(
), LIU Jindong, LI He, LI Yanli, YU Qiyuan, ZHAO Yuan, GENG Yanan
												  
						
						
						
					
				
Received:2025-01-02
															
							
															
							
															
							
																	Online:2025-09-26
															
							
							
																	Published:2025-09-28
															
							
						Supported by:LIU Han, LIU Jindong, LI He, LI Yanli, YU Qiyuan, ZHAO Yuan, GENG Yanan. Leakage Fault Identification of PV-Integrated Distribution Networks Based on CEEMDAN and NRBO-XGBoost[J]. Electric Power, 2025, 58(9): 23-32.
| 模态 分量  | 能量熵 | |||||||
| 线路正常漏电 | 光伏漏电 | 三相不平衡漏电 | 生物体触电 | |||||
| IMF1 | 3.1×10–7 | 8.3×10–7 | ||||||
| IMF2 | 7.9×10–8 | 2.3×10–7 | ||||||
| IMF3 | 8.7×10–7 | 3.4×10–6 | ||||||
| IMF4 | 7.7×10–7 | |||||||
| IMF5 | 7.3×10–7 | |||||||
| IMF6 | 7.2×10–7 | |||||||
| IMF7 | 7.1×10–7 | |||||||
| IMF8 | 6.2×10–7 | |||||||
| IMF9 | 6.5×10–7 | |||||||
| IMF10 | 8.4×10–7 | |||||||
| IMF11 | 2.4×10–5 | |||||||
| IMF12 | ||||||||
| IMF13 | ||||||||
| IMF14 | ||||||||
| IMF15 | ||||||||
Table 1 Energy entropy of IMF components
| 模态 分量  | 能量熵 | |||||||
| 线路正常漏电 | 光伏漏电 | 三相不平衡漏电 | 生物体触电 | |||||
| IMF1 | 3.1×10–7 | 8.3×10–7 | ||||||
| IMF2 | 7.9×10–8 | 2.3×10–7 | ||||||
| IMF3 | 8.7×10–7 | 3.4×10–6 | ||||||
| IMF4 | 7.7×10–7 | |||||||
| IMF5 | 7.3×10–7 | |||||||
| IMF6 | 7.2×10–7 | |||||||
| IMF7 | 7.1×10–7 | |||||||
| IMF8 | 6.2×10–7 | |||||||
| IMF9 | 6.5×10–7 | |||||||
| IMF10 | 8.4×10–7 | |||||||
| IMF11 | 2.4×10–5 | |||||||
| IMF12 | ||||||||
| IMF13 | ||||||||
| IMF14 | ||||||||
| IMF15 | ||||||||
| 算法 | 参数名称 | 参数值 | ||
| NRBO | 种群规模 | 20 | ||
| 最大迭代次数 | 50 | |||
| 搜索空间维度 | 3 | |||
| 避免陷进决定因素 | 0.6 | |||
| XGBoost | 决策树深度 | [1, 15] | ||
| 决策树数量 | [10, 500] | |||
| 学习率 | [ | |||
| 子节点最小权重 | 1 | 
Table 2 Parameter settings for NRBO and XGBoost algorithms
| 算法 | 参数名称 | 参数值 | ||
| NRBO | 种群规模 | 20 | ||
| 最大迭代次数 | 50 | |||
| 搜索空间维度 | 3 | |||
| 避免陷进决定因素 | 0.6 | |||
| XGBoost | 决策树深度 | [1, 15] | ||
| 决策树数量 | [10, 500] | |||
| 学习率 | [ | |||
| 子节点最小权重 | 1 | 
| 模型 | 评价指标 | 状态1 | 状态2 | 状态3 | 状态4 | |||||
| XGBoost | 准确率/% | 92.5 | ||||||||
| 精确度/% | 96.7 | 85.3 | 89.3 | 100.0 | ||||||
| 召回率/% | 96.7 | 96.7 | 83.3 | 93.3 | ||||||
| F1分数/% | 96.7 | 90.6 | 86.2 | 96.5 | ||||||
| NRBO- XGBoost  | 准确率/% | 99.2 | ||||||||
| 精确度/% | 100.0 | 100.0 | 96.8 | 100.0 | ||||||
| 召回率/% | 100.0 | 100.0 | 100.0 | 96.7 | ||||||
| F1分数/% | 100.0 | 100.0 | 98.4 | 98.3 | ||||||
Table 3 Comparison of identification results between NRBO-XGBoost and XGBoost
| 模型 | 评价指标 | 状态1 | 状态2 | 状态3 | 状态4 | |||||
| XGBoost | 准确率/% | 92.5 | ||||||||
| 精确度/% | 96.7 | 85.3 | 89.3 | 100.0 | ||||||
| 召回率/% | 96.7 | 96.7 | 83.3 | 93.3 | ||||||
| F1分数/% | 96.7 | 90.6 | 86.2 | 96.5 | ||||||
| NRBO- XGBoost  | 准确率/% | 99.2 | ||||||||
| 精确度/% | 100.0 | 100.0 | 96.8 | 100.0 | ||||||
| 召回率/% | 100.0 | 100.0 | 100.0 | 96.7 | ||||||
| F1分数/% | 100.0 | 100.0 | 98.4 | 98.3 | ||||||
| 模型 | 评价指标 | 状态1 | 状态2 | 状态3 | 状态4 | |||||
| PSO- XGBoost  | 准确率/% | 94.2 | ||||||||
| 精确度/% | 96.7 | 90.6 | 100.0 | 90.9 | ||||||
| 召回率/% | 96.7 | 96.7 | 83.3 | 100.0 | ||||||
| F1分数/% | 96.7 | 93.5 | 90.9 | 95.2 | ||||||
| CPO- XGBoost  | 准确率/% | 95.0 | ||||||||
| 精确度/% | 96.7 | 96.4 | 90.6 | 96.7 | ||||||
| 召回率/% | 96.7 | 90.0 | 96.7 | 96.7 | ||||||
| F1分数/% | 96.7 | 93.1 | 93.5 | 96.7 | ||||||
Table 4 Comparison of identification results of XGBoost models optimized by different algorithms
| 模型 | 评价指标 | 状态1 | 状态2 | 状态3 | 状态4 | |||||
| PSO- XGBoost  | 准确率/% | 94.2 | ||||||||
| 精确度/% | 96.7 | 90.6 | 100.0 | 90.9 | ||||||
| 召回率/% | 96.7 | 96.7 | 83.3 | 100.0 | ||||||
| F1分数/% | 96.7 | 93.5 | 90.9 | 95.2 | ||||||
| CPO- XGBoost  | 准确率/% | 95.0 | ||||||||
| 精确度/% | 96.7 | 96.4 | 90.6 | 96.7 | ||||||
| 召回率/% | 96.7 | 90.0 | 96.7 | 96.7 | ||||||
| F1分数/% | 96.7 | 93.1 | 93.5 | 96.7 | ||||||
| 模型 | 评价指标 | 状态1 | 状态2 | 状态3 | 状态4 | |||||
| NRBO-ELM | 准确率/% | 86.7 | ||||||||
| 精确度/% | 76.9 | 100.0 | 82.1 | 91.3 | ||||||
| 召回率/% | 100.0 | 100.0 | 76.7 | 70.0 | ||||||
| F1分数/% | 86.9 | 100.0 | 79.3 | 79.2 | ||||||
| NRBO-SVM | 准确率/% | 93.3 | ||||||||
| 精确度/% | 96.8 | 100.0 | 84.4 | 92.6 | ||||||
| 召回率/% | 100.0 | 100.0 | 90.0 | 83.3 | ||||||
| F1分数/% | 98.4 | 100.0 | 87.1 | 87.7 | ||||||
Table 5 Comparison of identification results of different models
| 模型 | 评价指标 | 状态1 | 状态2 | 状态3 | 状态4 | |||||
| NRBO-ELM | 准确率/% | 86.7 | ||||||||
| 精确度/% | 76.9 | 100.0 | 82.1 | 91.3 | ||||||
| 召回率/% | 100.0 | 100.0 | 76.7 | 70.0 | ||||||
| F1分数/% | 86.9 | 100.0 | 79.3 | 79.2 | ||||||
| NRBO-SVM | 准确率/% | 93.3 | ||||||||
| 精确度/% | 96.8 | 100.0 | 84.4 | 92.6 | ||||||
| 召回率/% | 100.0 | 100.0 | 90.0 | 83.3 | ||||||
| F1分数/% | 98.4 | 100.0 | 87.1 | 87.7 | ||||||
| 1 | 杜松怀. 电力系统接地技术[M]. 北京: 中国电力出版社, 2011: 25–55. | 
| 2 | MITOLO M. Shock hazard in the presence of protective residual-current devices[J]. IEEE Transactions on Industry Applications, 2010, 46 (4): 1552- 1557. | 
| 3 |  
											PARISE G. A new summary on the IEC protection against electric shock[J]. IEEE Transactions on Industry Applications, 2013, 49 (2): 1004- 1011. 
																							 DOI  | 
										
| 4 |  
											翟苏巍, 李银银, 杜凡, 等. 考虑海量分布式能源接入的配电网分布式无功控制策略[J]. 中国电力, 2024, 57 (8): 138- 144. 
																							 DOI  | 
										
|  
											ZHAI Suwei, LI Yinyin, DU Fan, et al. Distributed reactive power control strategy of distribution network considering massive distributed energy access[J]. Electric Power, 2024, 57 (8): 138- 144. 
																							 DOI  | 
										|
| 5 | 周洋, 黄德志, 李培栋, 等. 考虑平衡端点相位不对称及光伏接入的低压配电网三相潮流模型[J]. 中国电力, 2024, 57 (10): 190- 198. | 
| ZHOU Yang, HUANG Dezhi, LI Peidong, et al. A three-phase power flow model for low-voltage distribution networks considering balanced bus phase asymmetry and photovoltaic access[J]. Electric Power, 2024, 57 (10): 190- 198. | |
| 6 |  
											胡满琳, 李楠, 李一鸣, 等. 基于负序分量的含光伏电源配电网故障区段定位方法[J]. 中国电力, 2024, 57 (5): 188- 199. 
																							 DOI  | 
										
|  
											HU Manlin, LI Nan, LI Yiming, et al. Fault location method for distribution network with photovoltaic power based on negative sequence component[J]. Electric Power, 2024, 57 (5): 188- 199. 
																							 DOI  | 
										|
| 7 | 王伟, 朱江, 魏兴慎, 等. 面向新型配电系统的网络安全脆弱性评估[J]. 电力信息与通信技术, 2024, 22 (8): 37- 44. | 
| WANG Wei, ZHU Jiang, WEI Xingshen. Network security vulnerability assessment for new distribution systems[J]. Electric Power Information and Communication Technology, 2024, 22 (8): 37- 44. | |
| 8 | 慕静茹, 喻锟, 曾祥君, 等. 考虑多扰动因子的含光伏电源低压台区漏电故障检测[J]. 南方电网技术, 2024, 18 (10): 130- 141. | 
| MU Jingru, YU Kun, ZENG Xiangjun, et al. Leakage fault detection in low-voltage station area with photovoltaic power supply considering multi- disturbance factor[J]. Southern Power System Technology, 2024, 18 (10): 130- 141. | |
| 9 | LI K, LIN J Y, NIU F, et al. A novel fault leakage current detection method with protection deadzone elimination[J]. IEEE Transactions on Instrumentation and Measurement, 2020, 70, 3505009. | 
| 10 | 汪自虎, 王文天, 惠慧, 等. 基于近邻成分分析与优化核极限学习机的光伏接入配电网漏电识别[J]. 电高压电器, 2024, 60 (6): 0203- 02111. | 
| WANG Zhihu, WANG Wentian, HUI Hui, et al. Leakage recognition method of photovoltaic connected to distribution network based on neighborhood component analysis and optimized kernel extreme learning machine[J]. High Voltage Apparatus, 2024, 60 (6): 0203- 02111. | |
| 11 | 蔡智萍, 郭谋发, 魏正峰. 基于BP神经网络的低压配电网生命体触电识别方法研究[J]. 电网技术, 2022, 46 (4): 1614- 1623. | 
| CAI Zhiping, GUO Moufa, WEI Zhengfeng. Research on recognition method of living body shock in low-voltage distribution network based on BP neural network[J]. Power System Technology, 2022, 46 (4): 1614- 1623. | |
| 12 | 李春兰, 罗杰, 石砦, 等. 基于小波分析和概率神经网络的触电事故识别方法[J]. 江苏大学学报(自然科学版), 2023, 44 (1): 75- 81, 88. | 
| LI Chunlan, LUO Jie, SHI Zhai, et al. Electric shock identification method based on probabilistic neural network and wavelet analysis[J]. Journal of Jiangsu University (Natural Science Edition), 2023, 44 (1): 75- 81, 88. | |
| 13 | 徐寒, 朱三立, 张腾飞, 等. 低压配电系统剩余电流保护与重合闸逻辑组合优化方法[J]. 上海交通大学学报, 2025, 59 (7): 901- 911. | 
| XU Han, ZHU Sanli, ZHANG Tengfei, et al. Optimization method of residual current protection and coincidence brake logic combination of low voltage distribution system[J]. Journal of Shanghai Jiaotong University, 2025, 59 (7): 901- 911. | |
| 14 | 韩晓慧, 杜松怀, 苏娟, 等. 触电信号暂态特征提取及故障类型识别方法[J]. 电网技术, 2016, 40 (11): 3591- 3596. | 
| HAN Xiaohui, DU Songhuai, SU Juan, et al. Fault transient feature extraction and fault type identification for electrical shock signals[J]. Power System Technology, 2016, 40 (11): 3591- 3596. | |
| 15 | 李春兰, 罗杰, 王长云, 等. 基于循环谱特征和聚类分析的触电识别[J]. 电工技术学报, 2021, 36 (22): 4677- 4686. | 
| LI Chunlan, LUO Jie, WANG Changyun, et al. Electric shock recognition method based on cyclic spectrum features and cluster analysis[J]. Transactions of China Electrotechnical Society, 2021, 36 (22): 4677- 4686. | |
| 16 | 高伟, 饶俊民, 全圣鑫, 等. 不均衡小样本下多特征优化选择的生命体触电故障识别方法[J]. 电工技术学报, 2024, 4 (39): 2060- 2071. | 
| GAO Wei, RAO Junmin, QUAN Shengxin, et al. Biological electric-shock fault identification method based on multi-feature optimization selection under unbalanced small sample[J]. Transactions of China Electrotechnical Society, 2024, 4 (39): 2060- 2071. | |
| 17 | 刘斌, 吉春霖, 曹丽君, 等. 基于自适应噪声完全集合经验模态分解与BiLSTM-Transformer的锂离子电池剩余使用寿命预测[J]. 电力系统保护与控制, 2024, 52 (15): 167- 177. | 
| LIU Bin, JI Chunlin, CAO Lijun, et al. Prediction of remaining service life of lithium-ion batteries based on complete ensemble empirical mode decomposition with adaptive noise and BiLSTM-Transformer[J]. Power System Protection and Control, 2024, 52 (15): 167- 177. | |
| 18 | 刘友波, 吴浩, 刘挺坚, 等. 集成经验模态分解与深度学习的用户侧净负荷预测算法[J]. 电力系统自动化, 2021, 45 (24): 57- 64. | 
| LIU Youbo, WU Hao, LIU Tingjian, et al. User-side net load forecasting method integrating empirical mode decomposition and deep learning[J]. Automation of electric power systems, 2021, 45 (24): 57- 64. | |
| 19 |  
											GAO Z H, LIU Y, WANG Q J, et al. Ensemble empirical mode decomposition energy moment entropy and enhanced long short-term memory for early fault prediction of bearing[J]. Measurement, 2022, 188, 110417. 
																							 DOI  | 
										
| 20 |  
											SOWMYA R, PREMKUMAR M, JANGIR P. Newton-raphson-based optimizer: a new population-based metaheuristic algorithm for continuous optimization problems[J]. Engineering Applications of Artificial Intelligence, 2024, 128, 107532. 
																							 DOI  | 
										
| 21 | CHEN T Q, GUESTRIN C. XGBoost: a scalable tree boosting system[C]//Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. San Francisco California USA. ACM, 2016: 785–794. | 
| 22 |  
											庄家懿, 杨国华, 郑豪丰, 等. 基于多模型融合的CNN-LSTM-XGBoost短期电力负荷预测方法[J]. 中国电力, 2021, 54 (5): 46- 55. 
																							 DOI  | 
										
|  
											ZHUANG Jiayi, YANG Guohua, ZHENG Haofeng, et al. Short-term load forecasting method based on multi-model fusion using CNN-LSTM-XGBoost framework[J]. Electric Power, 2021, 54 (5): 46- 55. 
																							 DOI  | 
										|
| 23 | 柯亮, 李波, 廖凯, 等. 基于XGBoost的配电网高阻接地故障检测方法[J]. 电力系统保护与控制, 2024, 52 (6): 88- 98. | 
| KE Liang, LI Bo, LIAO Kai, et al. High impedance fault detection method in a distribution network based on XGBoost[J]. Power System Protection and Control, 2024, 52 (6): 88- 98. | |
| 24 | 范兴明, 许洪华, 李涛, 等. 基于SMA-VMD 和能量熵的高压断路器故障诊断[J]. 高电压技术, 2024, 50 (12): 5248- 5258. | 
| FAN Xingming, XU Honghua, LI Tao, et al. Fault diagnosis of high-voltage circuit breakers based on SMA-VMD and energy entropy[J]. High Voltage Engineering, 2024, 50 (12): 5248- 5258. | |
| 25 | 刘永梅, 盛万兴, 杜松怀. 一种面向剩余电流保护装置的触电阻抗建模方法[J]. 河北工业大学学报, 2017, 46 (4): 15- 23. | 
| LIU Yongmei, SHENG Wanxing, DU Songhuai. An electric shock impedance modeling method of living organisms in low-voltage distribution network[J]. Journal of Hebei University of Technology, 2017, 46 (4): 15- 23. | 
| [1] | ZHAO Shanshan, Gao Fei, LI Yajie, LI Jianfang, ZHANG Yu, DUAN Xiangjun, DONG Weijie. Multi-objective Optimization Control of Flexible Distribution Networks with Microgrid Clusters Based on Improved Memetic Algorithm [J]. Electric Power, 2025, 58(9): 97-104. | 
| [2] | WANG Shiqian, HAN Ding, WANG Nan, BAI Hongkun, SONG Dawei, HU Caihong. Cooperative Scheduling of Active Distribution Network Based on Two Layer Master Slave Game [J]. Electric Power, 2025, 58(9): 105-114. | 
| [3] | JI Xingquan, MAO Huizong, YE Pingfeng, LIU Zhiqiang, ZHANG Xiangxing, HUANG Xinyue, NI Yachao. Single-Pole High-Resistance Grounding Protection for DC Distribution Lines Based on Current Integral Quantity Correlation [J]. Electric Power, 2025, 58(8): 12-22, 30. | 
| [4] | LI Zhipeng, LIU Shaobo, YANG Hao, DONG Rui, QI Chenfeng, SHEN Shuo, ZHAO Peng. Synergistic Optimization of Harmonic Suppression and Loss Reduction in Distribution Networks Based on PSO [J]. Electric Power, 2025, 58(8): 50-59. | 
| [5] | LIU Junhui, GONG Jian, TONG Bingshen, LI Songjie, ZHANG Yihan, CUI Shichang, TIAN Chunzheng, ZHANG Yongbin. Coordinated Optimization Method for Virtual Power Plants and Distribution Networks Considering Distributed Energy Storage and Photovoltaics [J]. Electric Power, 2025, 58(6): 1-9. | 
| [6] | QIN Kun, QU Zhijiang, HAN Jianwei, XU Tao, GAO Feng, CHI Xiaoli. Battery Optimization Operation Strategy for the "SOP-Storage-Charger" Devices Based on Adjustable Virtual Impedance [J]. Electric Power, 2025, 58(6): 145-155. | 
| [7] | LI Peng, ZU Wenjing, LIU Yixin, TIAN Chunzheng, HAO Yuanzhao, LI Huixuan. State Estimation Method for Distribution Network Based on Incomplete Measurement Data [J]. Electric Power, 2025, 58(5): 1-10. | 
| [8] | WANG Jinfeng, LI Jinpeng, XU Yinliang, LIU Haitao, HE Jinxiong, XU Jianyuan. Distributed Optimization for VPP and Distribution Network Operation Considering Uncertainty and Green Certificate Market [J]. Electric Power, 2025, 58(4): 21-30, 192. | 
| [9] | XU Huihui, TIAN Yunfei, ZHAO Yuyang, PENG Jing, SHI Qingxin, CHENG Rui. A Reliability Assessment Method for Distribution Networks Based on Conditional Generative Adversarial Network and Multi-agent Reinforcement Learning [J]. Electric Power, 2025, 58(4): 230-236. | 
| [10] | BAO Hongyan, LIU Jicheng, LIU Ziyi, SUN Jiakang. A Two-layer Optimization Model for Active Distribution Networks Considering Electric-Hydrogen Hybrid Energy Storage Capacity Allocation [J]. Electric Power, 2025, 58(10): 27-38. | 
| [11] | LIAO Jian, ZHANG Yao, ZHANG Beixi, DONG Haomiao, LI Jiaxing, SUN Qianhao. A Robust Joint Planning Method for Soft Open Points and Energy Storage Systems in AC/DC Hybrid Distribution Networks Considering Electric Vehicle Demand Response [J]. Electric Power, 2025, 58(10): 82-96. | 
| [12] | LIAO Jiaqi, YU Ruoying, YE Rongbo, XIONG Junjie, XIA Junrong. Coordinated Control Method for Low-Voltage Distribution Networks with High-Penetration Residential Photovoltaic [J]. Electric Power, 2025, 58(10): 110-120, 135. | 
| [13] | QI Huanruo, CHEN Chen, GUO Fang, XUE Wenjie, YAN Xiangyang, KANG Yilong, LIU Juncheng, MA Siyuan. Multi-objective Bi-level Planning Model for Distribution Network Energy Storage Considering Refined Charging/Discharging and Carbon Benefits [J]. Electric Power, 2025, 58(10): 121-135. | 
| [14] | LI Yuehua, WANG Shuai, MA Zhuoran, YANG Zhiming, LIAO Xiaobing. Power Flow Optimization and Control Method for Distribution Networks Based on Hybrid Power Electronics Transformers [J]. Electric Power, 2025, 58(10): 171-179. | 
| [15] | Chunguang HE, Linfeng WANG, Yuan CAO, Jiakun AN, Zijian LEI, Guanyu SONG, Haoran JI. Collaborative Planning Method of Flexible Interconnection Devices for Multi-Voltage Level Distribution Network Considering Integrated Profits [J]. Electric Power, 2025, 58(1): 78-84. | 
| Viewed | ||||||
| 
										Full text | 
									
										 | 
								|||||
| 
										Abstract | 
									
										 | 
								|||||
