Electric Power ›› 2026, Vol. 59 ›› Issue (1): 163-174.DOI: 10.11930/j.issn.1004-9649.202507050
• New-Type Power Grid • Previous Articles
ZHANG Yumin1(
), WANG Delong1(
), ZHANG Xiao1(
), JI Xingquan1, ZHANG Xiangxing2, HUANG Xinyue1, WANG Xuelin3
Received:2025-07-18
Revised:2025-09-08
Online:2026-01-13
Published:2026-01-28
Supported by:ZHANG Yumin, WANG Delong, ZHANG Xiao, JI Xingquan, ZHANG Xiangxing, HUANG Xinyue, WANG Xuelin. CNN-BiGRU-ATT multi-branched distribution network fault location based on multi-dimensional fault feature extraction[J]. Electric Power, 2026, 59(1): 163-174.
| 参数 | 类别 |
| 故障类型 | 单相接地、两相接地、两相短路、三相短路 |
| 过渡电阻/Ω | 10、100、500、800、1 000 |
Table 1 Parameter setting of different fault points
| 参数 | 类别 |
| 故障类型 | 单相接地、两相接地、两相短路、三相短路 |
| 过渡电阻/Ω | 10、100、500、800、1 000 |
| 层类型 | 输出维度 | 内核大小/神经 元数/单元 |
| 输入层 | 5×5×3 | — |
| 折叠层 | 75×1×1 | — |
| 卷积层+RELU激活层 | 73×64×1 | 3×1内核 |
| 卷积层+RELU激活层 | 71×128×1 | 3×1内核 |
| 全局平均池化层 | 1×128×1 | — |
| 全连接层+ReLU激活层 | 16×1 | 16神经元 |
| 全连接层+Sigmoid激活层 | 128×1 | 128神经元 |
| 乘法层+展平层 | 71×128 | — |
| GRU层(正向)+GRU层(反向) | 4×1 | 4隐藏单元 |
| 拼接层 | 8×1 | — |
| 全连接层(分类)+Softmax层 | 7×1 | 7 |
| 分类输出层 | 7×1 | — |
Table 2 Branch fault location model parameters
| 层类型 | 输出维度 | 内核大小/神经 元数/单元 |
| 输入层 | 5×5×3 | — |
| 折叠层 | 75×1×1 | — |
| 卷积层+RELU激活层 | 73×64×1 | 3×1内核 |
| 卷积层+RELU激活层 | 71×128×1 | 3×1内核 |
| 全局平均池化层 | 1×128×1 | — |
| 全连接层+ReLU激活层 | 16×1 | 16神经元 |
| 全连接层+Sigmoid激活层 | 128×1 | 128神经元 |
| 乘法层+展平层 | 71×128 | — |
| GRU层(正向)+GRU层(反向) | 4×1 | 4隐藏单元 |
| 拼接层 | 8×1 | — |
| 全连接层(分类)+Softmax层 | 7×1 | 7 |
| 分类输出层 | 7×1 | — |
| 层类型 | 输出维度 | 内核大小/神经 元数/单元 |
| 输入层 | 76×1 | — |
| 折叠层 | 76×1×1 | — |
| 卷积层+RELU激活层 | 74×64×1 | 3×1内核 |
| 卷积层+RELU激活层 | 72×128×1 | 3×1内核 |
| 全局平均池化层 | 1×128×1 | — |
| 全连接层+ReLU激活层 | 16×1 | 16神经元 |
| 全连接层+Sigmoid激活层 | 128×1 | 128神经元 |
| 乘法层+展平层 | 72×128 | — |
| GRU层(正向)+GRU层(反向) | 4×1 | 4隐藏单元 |
| 拼接层 | 8×1 | — |
| 全连接层(回归)+Softmax层 | 1×1 | 7 |
| 回归输出层 | 1×1 | — |
Table 3 Accurate fault location model parameters
| 层类型 | 输出维度 | 内核大小/神经 元数/单元 |
| 输入层 | 76×1 | — |
| 折叠层 | 76×1×1 | — |
| 卷积层+RELU激活层 | 74×64×1 | 3×1内核 |
| 卷积层+RELU激活层 | 72×128×1 | 3×1内核 |
| 全局平均池化层 | 1×128×1 | — |
| 全连接层+ReLU激活层 | 16×1 | 16神经元 |
| 全连接层+Sigmoid激活层 | 128×1 | 128神经元 |
| 乘法层+展平层 | 72×128 | — |
| GRU层(正向)+GRU层(反向) | 4×1 | 4隐藏单元 |
| 拼接层 | 8×1 | — |
| 全连接层(回归)+Softmax层 | 1×1 | 7 |
| 回归输出层 | 1×1 | — |
| 真实结果 | 预测结果 | |
| 正类 | 负类 | |
| 正类 | TP(真正类) | FN(假负类) |
| 负类 | FP(假正类) | TN(真负类) |
Table 4 Confusion matrix for binary classification
| 真实结果 | 预测结果 | |
| 正类 | 负类 | |
| 正类 | TP(真正类) | FN(假负类) |
| 负类 | FP(假正类) | TN(真负类) |
| 模型 | RMSE/m | MAE/m | R2 |
| CNN-LSTM-ATT | 168.958 6 | 126.336 4 | 0.985 9 |
| CNN-GRU-ATT | 154.174 2 | 115.609 5 | 0.988 3 |
| CNN-BiLSTM-ATT | 133.790 9 | 94.974 1 | 0.991 2 |
| CNN-BiGRU-ATT | 78.643 3 | 55.766 9 | 0.996 9 |
Table 5 Comparison of location accuracy among various models
| 模型 | RMSE/m | MAE/m | R2 |
| CNN-LSTM-ATT | 168.958 6 | 126.336 4 | 0.985 9 |
| CNN-GRU-ATT | 154.174 2 | 115.609 5 | 0.988 3 |
| CNN-BiLSTM-ATT | 133.790 9 | 94.974 1 | 0.991 2 |
| CNN-BiGRU-ATT | 78.643 3 | 55.766 9 | 0.996 9 |
| 定位模型 | 过渡电阻/ Ω | 支路 识别 | 精准定位 结果/m | 精准定位 绝对误差/m |
| CNN-LSTM-ATT | 10 | L5 | 333.85 | 216.15 |
| 100 | L5 | 328.59 | 221.41 | |
| 500 | L5 | 318.33 | 231.67 | |
| 800 | L5 | 318.33 | 177.10 | |
| 1 000 | L5 | 381.48 | 168.52 | |
| CNN-GRU-ATT | 10 | L5 | 268.26 | 281.74 |
| 100 | L5 | 303.99 | 246.01 | |
| 500 | L5 | 353.21 | 196.79 | |
| 800 | L5 | 353.17 | 196.83 | |
| 1 000 | L5 | 346.66 | 203.34 | |
| CNN-BiLSTM-ATT | 10 | L5 | 370.86 | 179.14 |
| 100 | L5 | 385.85 | 164.15 | |
| 500 | L5 | 556.17 | 6.17 | |
| 800 | L5 | 627.55 | 77.55 | |
| 1 000 | L5 | 640.78 | 90.78 | |
| CNN-BiGRU-ATT | 10 | L5 | 543.03 | 6.97 |
| 100 | L5 | 486.32 | 63.68 | |
| 500 | L5 | 556.40 | 6.40 | |
| 800 | L5 | 555.97 | 5.97 | |
| 1 000 | L5 | 569.36 | 19.36 |
Table 6 Comparison of the results of four fault location models under different transition resistances
| 定位模型 | 过渡电阻/ Ω | 支路 识别 | 精准定位 结果/m | 精准定位 绝对误差/m |
| CNN-LSTM-ATT | 10 | L5 | 333.85 | 216.15 |
| 100 | L5 | 328.59 | 221.41 | |
| 500 | L5 | 318.33 | 231.67 | |
| 800 | L5 | 318.33 | 177.10 | |
| 1 000 | L5 | 381.48 | 168.52 | |
| CNN-GRU-ATT | 10 | L5 | 268.26 | 281.74 |
| 100 | L5 | 303.99 | 246.01 | |
| 500 | L5 | 353.21 | 196.79 | |
| 800 | L5 | 353.17 | 196.83 | |
| 1 000 | L5 | 346.66 | 203.34 | |
| CNN-BiLSTM-ATT | 10 | L5 | 370.86 | 179.14 |
| 100 | L5 | 385.85 | 164.15 | |
| 500 | L5 | 556.17 | 6.17 | |
| 800 | L5 | 627.55 | 77.55 | |
| 1 000 | L5 | 640.78 | 90.78 | |
| CNN-BiGRU-ATT | 10 | L5 | 543.03 | 6.97 |
| 100 | L5 | 486.32 | 63.68 | |
| 500 | L5 | 556.40 | 6.40 | |
| 800 | L5 | 555.97 | 5.97 | |
| 1 000 | L5 | 569.36 | 19.36 |
| 定位模型 | 初相角/ ° | 支路 识别 | 精准定位 结果/m | 精准定位 绝对误差/m |
| CNN-LSTM-ATT | 10 | L5 | 701.33 | 298.67 |
| 30 | L5 | 785.25 | 214.75 | |
| 60 | L5 | 801.85 | 198.15 | |
| 90 | L5 | 799.68 | 200.32 | |
| CNN-GRU-ATT | 10 | L5 | 783.36 | 216.64 |
| 30 | L5 | 899.68 | 100.32 | |
| 60 | L5 | 915.80 | 84.20 | |
| 90 | L5 | 916.13 | 83.87 | |
| CNN-BiLSTM-ATT | 10 | L5 | 926.64 | 73.36 |
| 30 | L5 | 1 027.77 | 27.77 | |
| 60 | L5 | 1 021.53 | 21.53 | |
| 90 | L5 | 1 006.42 | 6.42 | |
| CNN-BiGRU-ATT | 10 | L5 | 949.80 | 50.20 |
| 30 | L5 | 1 002.95 | 2.95 | |
| 60 | L5 | 978.94 | 21.06 | |
| 90 | L5 | 987.50 | 12.50 |
Table 7 Comparison of the results of four location models under different fault inception angles
| 定位模型 | 初相角/ ° | 支路 识别 | 精准定位 结果/m | 精准定位 绝对误差/m |
| CNN-LSTM-ATT | 10 | L5 | 701.33 | 298.67 |
| 30 | L5 | 785.25 | 214.75 | |
| 60 | L5 | 801.85 | 198.15 | |
| 90 | L5 | 799.68 | 200.32 | |
| CNN-GRU-ATT | 10 | L5 | 783.36 | 216.64 |
| 30 | L5 | 899.68 | 100.32 | |
| 60 | L5 | 915.80 | 84.20 | |
| 90 | L5 | 916.13 | 83.87 | |
| CNN-BiLSTM-ATT | 10 | L5 | 926.64 | 73.36 |
| 30 | L5 | 1 027.77 | 27.77 | |
| 60 | L5 | 1 021.53 | 21.53 | |
| 90 | L5 | 1 006.42 | 6.42 | |
| CNN-BiGRU-ATT | 10 | L5 | 949.80 | 50.20 |
| 30 | L5 | 1 002.95 | 2.95 | |
| 60 | L5 | 978.94 | 21.06 | |
| 90 | L5 | 987.50 | 12.50 |
| 定位模型 | 故障 类型 | 支路 识别 | 精准定位 结果/m | 精准定位 绝对误差/m |
| CNN-LSTM-ATT | Ag | L5 | 2 328.55 | 221.45 |
| AB | L5 | 2 342.43 | 207.57 | |
| ABg | L5 | 2 363.83 | 186.17 | |
| ABC | L5 | 2 387.12 | 162.88 | |
| CNN-GRU-ATT | Ag | L5 | 2 335.39 | 214.61 |
| AB | L5 | 2 393.28 | 156.72 | |
| ABg | L5 | 2 359.94 | 190.06 | |
| ABC | L5 | 2 431.44 | 118.56 | |
| CNN-BiLSTM-ATT | Ag | L5 | 2 438.86 | 111.14 |
| AB | L5 | 2 388.79 | 161.21 | |
| ABg | L5 | 2 390.79 | 159.21 | |
| ABC | L5 | 2 498.03 | 51.97 | |
| CNN-BiGRU-ATT | Ag | L5 | 2 541.27 | 8.73 |
| AB | L5 | 2 489.38 | 60.62 | |
| ABg | L5 | 2 500.36 | 49.64 | |
| ABC | L5 | 2 537.97 | 12.03 |
Table 8 Comparison of the results of four location models under different fault types
| 定位模型 | 故障 类型 | 支路 识别 | 精准定位 结果/m | 精准定位 绝对误差/m |
| CNN-LSTM-ATT | Ag | L5 | 2 328.55 | 221.45 |
| AB | L5 | 2 342.43 | 207.57 | |
| ABg | L5 | 2 363.83 | 186.17 | |
| ABC | L5 | 2 387.12 | 162.88 | |
| CNN-GRU-ATT | Ag | L5 | 2 335.39 | 214.61 |
| AB | L5 | 2 393.28 | 156.72 | |
| ABg | L5 | 2 359.94 | 190.06 | |
| ABC | L5 | 2 431.44 | 118.56 | |
| CNN-BiLSTM-ATT | Ag | L5 | 2 438.86 | 111.14 |
| AB | L5 | 2 388.79 | 161.21 | |
| ABg | L5 | 2 390.79 | 159.21 | |
| ABC | L5 | 2 498.03 | 51.97 | |
| CNN-BiGRU-ATT | Ag | L5 | 2 541.27 | 8.73 |
| AB | L5 | 2 489.38 | 60.62 | |
| ABg | L5 | 2 500.36 | 49.64 | |
| ABC | L5 | 2 537.97 | 12.03 |
| 1 |
王宇杉, 王晨, 王淑侠, 等. 基于IWOA的配电网故障定位方法[J]. 智慧电力, 2024, 52 (11): 98- 105.
|
|
WANG Yushan, WANG Chen, WANG Shuxia, et al. Fault location method for distribution network based on improved IWOA[J]. Smart Power, 2024, 52 (11): 98- 105.
|
|
| 2 |
吉兴全, 张祥星, 张玉敏, 等. 基于LSD算法的多分支配电网故障定位[J]. 中国电力, 2025, 58 (9): 54- 67.
|
|
JI Xingquan, ZHANG Xiangxing, ZHANG Yumin, et al. Multi-branch distribution network fault location based on LSD algorithm[J]. Electric Power, 2025, 58 (9): 54- 67.
|
|
| 3 |
吴振杰, 胡晨, 陈海燕, 等. 基于双比例补偿系数的有源配电网电流差动保护[J]. 浙江电力, 2024, 43 (12): 104- 113.
|
|
WU Zhenjie, HU Chen, CHEN Haiyan, et al. Differential current protection for active distribution networks with dual proportional compensation coefficients[J]. Zhejiang Electric Power, 2024, 43 (12): 104- 113.
|
|
| 4 |
何宇宁, 王自主, 乔依林, 等. 某330MW亚临界机组供热改造后一次调频控制策略优化[J]. 电力科技与环保, 2023, 39 (2): 120- 128.
|
|
HE Yuning, WANG Zizhu, QIAO Yilin, et al. Optimization of primary frequency control strategy for a 330MW sub-critical unit after heating transformation[J]. Electric Power Technology and Environmental Protection, 2023, 39 (2): 120- 128.
|
|
| 5 |
YANG Z, WANG H Y, LIAO W L, et al. Protection challenges and solutions for AC systems with renewable energy sources: a review[J]. Protection and Control of Modern Power Systems, 2025, 10 (1): 18- 39.
|
| 6 | 吉兴全, 张朔, 张玉敏, 等. 基于IELM算法的配电网故障区段定位[J]. 电力系统自动化, 2021, 45 (22): 157- 166. |
| JI Xingquan, ZHANG Shuo, ZHANG Yumin, et al. Fault section location for distribution network based on improved electromagnetism-like mechanism algorithm[J]. Automation of Electric Power Systems, 2021, 45 (22): 157- 166. | |
| 7 |
胡满琳, 李楠, 李一鸣, 等. 基于负序分量的含光伏电源配电网故障区段定位方法[J]. 中国电力, 2024, 57 (5): 188- 199.
|
|
HU Manlin, LI Nan, LI Yiming, et al. Fault location method for distribution network with photovoltaic power based on negative sequence component[J]. Electric Power, 2024, 57 (5): 188- 199.
|
|
| 8 | 钱达, 陈浩, 马刚. 基于改进正余弦算法的配电网无功优化[J]. 综合智慧能源, 2024, 46 (10): 40- 47. |
| QIAN Da, CHEN Hao, MA Gang. Reactive power optimal scheduling of distribution network based on improved sine-cosine algorithm[J]. Integrated Intelligent Energy, 2024, 46 (10): 40- 47. | |
| 9 |
李铁成, 张卫明, 臧谦, 等. 基于混合整数线性规划的配电网在线自愈方案[J]. 中国电力, 2023, 56 (5): 129- 136.
|
|
LI Tiecheng, ZHANG Weiming, ZANG Qian, et al. Online self-healing scheme of distribution network based on mixed integer linear programming[J]. Electric Power, 2023, 56 (5): 129- 136.
|
|
| 10 |
梁栋, 赵月梓, 贺国润, 等. 基于图半监督与多任务学习的配电网故障区段与类型统一辨识[J]. 电力系统保护与控制, 2024, 52 (12): 25- 32.
|
|
LIANG Dong, ZHAO Yuezi, HE Guorun, et al. Unified identification of fault section and type for distribution networks based on graph semi-supervised and multi-task learning[J]. Power System Protection and Control, 2024, 52 (12): 25- 32.
|
|
| 11 |
SUN Y, FAN Y F, HOU J J, et al. A unit protection scheme based on the transient current coordinate mapping interval[J]. Protection and Control of Modern Power Systems, 2025, 10 (1): 103- 120.
|
| 12 | 麦章渠, 曾颖, 张禄亮, 等. 基于改进哈里斯鹰优化算法的有源配电网故障定位[J]. 智慧电力, 2022, 50 (11): 104- 111. |
| MAI Zhangqu, ZENG Ying, ZHANG Luliang, et al. Fault location of active distribution network based on improved Harris Hawks optimization algorithm[J]. Smart Power, 2022, 50 (11): 104- 111. | |
| 13 | ALI BUKHARI S B, KIM C H, MEHMOOD K K, et al. Convolutional neural network-based intelligent protection strategy for microgrids[J]. IET Generation, Transmission & Distribution, 2020, 14 (7): 1177- 1185. |
| 14 |
白通, 王慧芳, 杨林刚, 等. 基于图神经网络的海上风电场集电线路故障区段定位方法[J]. 电力系统及其自动化学报, 2024, 36 (10): 108- 116.
|
|
BAI Tong, WANG Huifang, YANG Lingang, et al. Fault segment location method for collector lines in offshore wind farms based on graph neural network[J]. Proceedings of the CSU-EPSA, 2024, 36 (10): 108- 116.
|
|
| 15 |
ZHANG M, WANG D, GAO H L, et al. Novel traveling wave fault location method for HVDC transmission line based on wavefront frequency[J]. Electric Power Systems Research, 2024, 234, 110598.
|
| 16 | WU H, WANG J, NAN D L, et al. Fault location and fault cause identification method for transmission lines based on pose normalized multioutput convolutional nets[J]. IEEE Transactions on Instrumentation and Measurement, 2025, 74, 3500412. |
| 17 |
吉兴全, 陈金硕, 张玉敏, 等. 基于CNN-SVM的配电网故障分类研究[J]. 智慧电力, 2022, 50 (1): 94- 100.
|
|
JI Xingquan, CHEN Jinshuo, ZHANG Yumin, et al. Fault classification in distribution network based on CNN-SVM[J]. Smart Power, 2022, 50 (1): 94- 100.
|
|
| 18 |
WANG D, YU D C, GAO H L, et al. Frequency modification algorithm-based traveling wave fault location approach for overhead transmission lines with structural changes[J]. Protection and Control of Modern Power Systems, 2025, 10 (2): 1- 12.
|
| 19 |
CHEN K J, HU J, ZHANG Y, et al. Fault location in power distribution systems via deep graph convolutional networks[J]. IEEE Journal on Selected Areas in Communications, 2020, 38 (1): 119- 131.
|
| 20 |
何小龙, 高红均, 黄媛, 等. 基于一维卷积和图神经网络的配电网故障区段定位方法[J]. 电力系统保护与控制, 2024, 52 (17): 27- 39.
|
|
HE Xiaolong, GAO Hongjun, HUANG Yuan, et al. Fault section location for a distribution network based on one-dimensional convolution and graph neural networks[J]. Power System Protection and Control, 2024, 52 (17): 27- 39.
|
|
| 21 |
黄南天, 程铎, 蔡国伟. 基于改进时空图神经网络的高渗透率有源配电网故障定位[J]. 电力系统自动化, 2025, 49 (10): 112- 122.
|
|
HUANG Nantian, CHENG Duo, CAI Guowei. Fault location for active distribution network with high penetration rate based on improved spatio-temporal graph neural network[J]. Automation of Electric Power Systems, 2025, 49 (10): 112- 122.
|
|
| 22 |
LUO J, LIU Y, CUI Q S, et al. Single-ended time domain fault location based on transient signal measurements of transmission lines[J]. Protection and Control of Modern Power Systems, 2024, 9 (2): 61- 74.
|
| 23 |
尚博阳, 罗国敏, 茹嘉昕, 等. 基于有限量测信息的多分支配电线路故障定位方法[J]. 高电压技术, 2023, 49 (6): 2308- 2319.
|
|
SHANG Boyang, LUO Guomin, RU Jiaxin, et al. Fault location method of multi-branch distribution lines based on limited measurement information[J]. High Voltage Engineering, 2023, 49 (6): 2308- 2319.
|
|
| 24 |
鲁晓天, 唐金锐, 尹昕, 等. 基于多维时频特征的新型配电系统单相接地故障定位方法[J]. 高电压技术, 2025, 51 (2): 903- 914.
|
|
LU Xiaotian, TANG Jinrui, YIN Xin, et al. Single-phase-to-ground fault section location in new-type distribution system based on multidimensional time-frequency distribution characteristics[J]. High Voltage Engineering, 2025, 51 (2): 903- 914.
|
|
| 25 |
邓丰, 史鸿飞, 冯思旭, 等. CNN-LSTM全景故障特征挖掘的配电网单端定位方法[J]. 中国电机工程学报, 2023, 43 (S1): 114- 126.
|
|
DENG Feng, SHI Hongfei, FENG Sixu, et al. Single-ended traveling wave location method for distribution network based on CNN-LSTM panoramic fault feature mining[J]. Proceedings of the CSEE, 2023, 43 (S1): 114- 126.
|
|
| 26 | 席磊, 熊雅慧, 彭典名, 等. 基于主成分分析-径向基神经网络算法的电网虚假数据注入攻击定位检测[J/OL]. 南方电网技术, 2025: 1–13. (2025-05-14). https://kns.cnki.net/KCMS/detail/detail.aspx?filename=NFDW20250512002&dbname=CJFD&dbcode=CJFQ. |
| XI Lei, XIONG Yahui, PENG Dianming, et al. Localization detection of false data injection attack on power grid based on principal component analysis-radial basis neural network algorithm[J/OL]. Southern Power System Technology, 2025: 1–13. (2025-05-14). https://kns.cnki.net/KCMS/detail/detail.aspx?filename=NFDW20250512002&dbname=CJFD&dbcode=CJFQ. | |
| 27 | 张亚丽, 王聪, 张宏立, 等. 基于非平稳Transformer的超短期风电功率多步预测[J]. 智慧电力, 2024, 52 (1): 108- 115. |
| ZHANG Yali, WANG Cong, ZHANG Hongli, et al. Multi-step prediction of ultra-short-term wind power based on non-stationary transformer[J]. Smart Power, 2024, 52 (1): 108- 115. | |
| 28 | 吉兴全, 薛科壮, 叶平峰, 等. 基于自调参深度双Q网络算法的配电网智能组网规划[J]. 智慧电力, 2025, 53 (11): 48- 55. |
| JI Xingquan, XUE Kezhuang, YE Pingfeng, et al. Smart networking planning for distribution networks based on an automatically adjusting parameters-based deep double Q network algorithm[J]. Smart Power, 2025, 53 (11): 48- 55. | |
| 29 | 赵唯嘉, 白云霄, 张云勇, 等. 基于关键特征对比分析的异常电价成因溯源方法[J]. 中国电力, 2025, 58 (5): 110- 120. |
| ZHAO Weijia, BAI Yunxiao, ZHANG Yunyong, et al. Traceability method for the causes of abnormal electricity prices based on comparative analysis of key features[J]. Electric Power, 2025, 58 (5): 110- 120. | |
| 30 | 王传琦, 伍历文, 邓志斌, 等. 时间累积架空输电线路覆冰预测模型与算法综述[J]. 中国电力, 2024, 57 (6): 153- 164, 234. |
| WANG Chuanqi, WU Liwen, DENG Zhibin, et al. Review of icing prediction model and algorithm for overhead transmission lines considering time cumulative effects[J]. Electric Power, 2024, 57 (6): 153- 164, 234. |
| [1] | JI Xingquan, ZHANG Xiangxing, ZHANG Yumin, YE Pingfeng, WANG Delong, HUANG Xinyue. Multi-branch Distribution Network Fault Location Based on LSD Algorithm [J]. Electric Power, 2025, 58(9): 54-67. |
| [2] | TAO Jun, ZHONG Ming, ZHANG Yi, LIU Feng, WU Yuzhu, XIA Zhenxing. Fault Location Method for Secondary System of Smart Substations Based on Network Flow Algorithm and Deep Neural Network [J]. Electric Power, 2025, 58(9): 68-78. |
| [3] | Manlin HU, Nan LI, Yiming LI, Zhiyong PI, Yi ZHU, Zhenxing LI. Fault Location Method for Distribution Network with Photovoltaic Power Based on Negative Sequence Component [J]. Electric Power, 2024, 57(5): 188-199. |
| [4] | PI Zhiyong, ZHU Yi, LIAO Xuan, LI Zhenxing, FANG Hao, WU Pei. Fault Location Method for Communication Link with Multi-information Fusion Modeling of Smart Substation [J]. Electric Power, 2023, 56(8): 207-215. |
| [5] | PI Zhiyong, ZHU Yi, LIAO Xuan, LI Zhenxing, FANG Hao, WU Pei. Fault Location Method for Communication Link in Smart Substation Based on Deep Learning [J]. Electric Power, 2023, 56(7): 136-145. |
| [6] | LI Tiecheng, ZHANG Weiming, ZANG Qian, WANG Xianzhi, REN Jiangbo, ZHOU Kun. Online Self-Healing Scheme of Distribution Network Based on Mixed Integer Linear Programming [J]. Electric Power, 2023, 56(5): 129-136. |
| [7] | CAO Fulu, ZHAO Jinbin, PAN Chao, MAO Ling, QU Keqing. An Active Ground Fault Location Method for Low-Voltage DC Lines Based on DFFT [J]. Electric Power, 2023, 56(4): 184-191. |
| [8] | Ming ZHONG, Jun TAO, Xunyu LIU, Yi YANG, Bingyuan YANG. Smart Substation Optical Fiber Virtual and Real Loop Mapping and Fault Diagnosis Technology [J]. Electric Power, 2023, 56(10): 171-178. |
| [9] | YANG Xihang, HUANG Chun, SHEN Yatao, HU Nianen, WAN Ziheng. Fault Location Method for Distribution Lines Based on Loss Power Matching [J]. Electric Power, 2022, 55(8): 113-120. |
| [10] | WANG Weizhang, WANG Chun, YIN Fagen. Reachability Matrix and Bayes' Theorem Based Fault Section Location of Power Distribution Network with Distributed Generation [J]. Electric Power, 2021, 54(7): 93-99,124. |
| [11] | WU Jianwei, SHAO Jianfeng. Fault Location of DC Transmission Lines Based on Backward Waves Considering Wave Speed Changes [J]. Electric Power, 2021, 54(5): 121-128. |
| [12] | LI Fuzhi, ZHENG Weibin, ZHANG Wenhai, ZHANG Zhiyong, LIN Defeng, ZHANG Xubo, ZHANG Rongjian. Fault Path Direct-Current Resistance Based Off-Line Single-Phase-To-Ground Fault Location [J]. Electric Power, 2021, 54(2): 140-146. |
| [13] | XU Yanchun, ZHAO Caicai, SUN Sihan, MI Lu. Fault Location for Active Distribution Network Based on Improved LMD and Energy Relative Entropy [J]. Electric Power, 2021, 54(11): 133-143. |
| [14] | ZHAO Siteng, GUI Lin, ZHANG Qixue, WANG Xiangheng. Ground Fault Location of Large Generator and External Components [J]. Electric Power, 2020, 53(3): 119-125. |
| [15] | CHAI Peng, ZHOU Hao, ZHANG Yu, ZHAO Wenjie, YANG Xiao, ZHOU Miao, LI Mingzhen. Short-Circuit Fault Location for Power Cables Based on Improved Two-Terminal Traveling Wave Method [J]. Electric Power, 2020, 53(11): 168-174. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
