Electric Power ›› 2021, Vol. 54 ›› Issue (1): 104-115.DOI: 10.11930/j.issn.1004-9649.202003132
Previous Articles Next Articles
FU Hongjun1, CHEN Huifen1, ZHAO Hua2, WANG Kaifeng3, LU Zongxiang3, QIAO Ying3
Received:
2020-03-19
Revised:
2020-05-05
Online:
2021-01-05
Published:
2021-01-11
Supported by:
FU Hongjun, CHEN Huifen, ZHAO Hua, WANG Kaifeng, LU Zongxiang, QIAO Ying. Review on Frequency Regulation Technology with High Wind Power Penetration[J]. Electric Power, 2021, 54(1): 104-115.
[1] Ren21. Renewables 2020 global status report[J]. Parais, 2020 [2] 王瑞明, 徐浩, 秦世耀, 等. 风电场一次调频分层协调控制研究与应用[J]. 电力系统保护与控制, 2019, 47(14): 50-58 WANG Ruiming, XU Hao, QIN Shiyao, et al. Research and application on primary frequency regulation of wind farms based on hierarchical coordinated control[J]. Power System Protection and Control, 2019, 47(14): 50-58 [3] YE Y D, QIAO Y, LU Z X. Revolution of frequency regulation in the converter-dominated power system[J]. Renewable and Sustainable Energy Reviews, 2019, 111: 145-156. [4] SUN Y, ZHANG Z, LI G, et al. Review on frequency control of power systems with wind power penetration[C]//2010 International Conference on Power System Technology (POWERCON). IEEE, 2010. [5] 谷俊和, 刘建平, 江浩. 风电接入对系统频率影响及风电调频技术综述[J]. 现代电力, 2015, 32(1): 46-51 GU Junhe, LIU Jianping, JIANG Hao. Literature review on the influence of wind power on system frequency and frequency regulation technologies of wind power[J]. Modern Electric Power, 2015, 32(1): 46-51 [6] STRBAC G, SHAKOOR A, BLACK M, et al. Impact of wind generation on the operation and development of the UK electricity systems[J]. Electric Power Systems Research, 2007, 77(9): 1214-1227. [7] 刘巨, 姚伟, 文劲宇, 等. 大规模风电参与系统频率调整的技术展望[J]. 电网技术, 2014, 38(3): 638-646 LIU Ju, YAO Wei, WEN Jinyu, et al. Prospect of technology for large-scale wind farm participating into power grid frequency regulation[J]. Power System Technology, 2014, 38(3): 638-646 [8] MORREN J, DE HAAN S W H, KLING W L, et al. Wind turbines emulating inertia and supporting primary frequency control[J]. IEEE Transactions on Power Systems, 2006, 21(1): 433-434. [9] 张旭, 查效兵, 岳帅. 基于转子动能控制的DFIG调频能力分析与调频方案[J]. 电力科学与技术学报, 2020, 35(3): 141-147 ZHANG Xu, ZHA Xiaobing, YUE Shuai. Frequency regulation capability analysis and regulation plan of doubly-fed induction generator based on the rotor kinetic energy control[J]. Journal of Electric Power Science and Technology, 2020, 35(3): 141-147 [10] 周天沛, 孙伟. 高渗透率下变速风力机组虚拟惯性控制的研究[J]. 中国电机工程学报, 2017, 37(2): 486-496 ZHOU Tianpei, SUN Wei. Study on virtual inertia control for DFIG-based wind farms with high penetration[J]. Proceedings of the CSEE, 2017, 37(2): 486-496 [11] 付媛, 王毅, 张祥宇, 等. 变速风电机组的惯性与一次调频特性分析及综合控制[J]. 中国电机工程学报, 2014, 34(27): 4706-4716 FU Yuan, WANG Yi, ZHANG Xiangyu, et al. Analysis and integrated control of inertia and primary frequency regulation for variable speed wind turbines[J]. Proceedings of the CSEE, 2014, 34(27): 4706-4716 [12] 赵嘉兴, 高伟, 上官明霞, 等. 风电参与电力系统调频综述[J]. 电力系统保护与控制, 2017, 45(21): 157-169 ZHAO Jiaxing, GAO Wei, SHANGGUAN Mingxia, et al. Review on frequency regulation technology of power grid by wind farm[J]. Power System Protection and Control, 2017, 45(21): 157-169 [13] VIDYANANDAN K V, SENROY N. Primary frequency regulation by deloaded wind turbines using variable droop[J]. IEEE Transactions on Power Systems, 2013, 28(2): 837-846. [14] 潘文霞, 全锐, 王飞. 基于双馈风电机组的变下垂系数控制策略[J]. 电力系统自动化, 2015, 39(11): 126-131, 186 PAN Wenxia, QUAN Rui, WANG Fei. A variable droop control strategy for doubly-fed induction generators[J]. Automation of Electric Power Systems, 2015, 39(11): 126-131, 186 [15] 王清, 薛安成, 张晓佳, 等. 双馈风机下垂控制对系统小扰动功角稳定的影响机理分析[J]. 电网技术, 2017, 41(4): 1091-1099 WANG Qing, XUE Ancheng, ZHANG Xiaojia, et al. Mechanism analysis of droop control of DFIG influence on system small-signal dynamic stability based on damping torque analysis[J]. Power System Technology, 2017, 41(4): 1091-1099 [16] 张旭, 陈云龙, 岳帅, 等. 风电参与电力系统调频技术研究的回顾与展望[J]. 电网技术, 2018, 42(6): 1793-1803 ZHANG Xu, CHEN Yunlong, YUE Shuai, et al. Retrospect and prospect of research on frequency regulation technology of power system by wind power[J]. Power System Technology, 2018, 42(6): 1793-1803 [17] WANG Y, DELILLE G, BAYEM H, et al. High wind power penetration in isolated power systems-assessment of wind inertial and primary frequency responses[J]. IEEE Transactions on Power Systems, 2013, 28(3): 2412-2420. [18] YE H, PEI W, QI Z P. Analytical modeling of inertial and droop responses from a wind farm for short-term frequency regulation in power systems[J]. IEEE Transactions on Power Systems, 2016, 31(5): 3414-3423. [19] 张冠锋, 杨俊友, 孙峰, 等. 基于虚拟惯量和频率下垂控制的双馈风电机组一次调频策略[J]. 电工技术学报, 2017, 32(22): 225-232 ZHANG Guanfeng, YANG Junyou, SUN Feng, et al. Primary frequency regulation strategy of DFIG based on virtual inertia and frequency droop control[J]. Transactions of China Electrotechnical Society, 2017, 32(22): 225-232 [20] LEE J, MULJADI E, SORENSEN P, et al. Releasable kinetic energy-based inertial control of a DFIG wind power plant[J]. IEEE Transactions on Sustainable Energy, 2016, 7(1): 279-288. [21] 刘彬彬, 杨健维, 廖凯, 等. 基于转子动能控制的双馈风电机组频率控制改进方案[J]. 电力系统自动化, 2016, 40(16): 17-22 LIU Binbin, YANG Jianwei, LIAO Kai, et al. Improved frequency control strategy for DFIG-based wind turbines based on rotor kinetic energy control[J]. Automation of Electric Power Systems, 2016, 40(16): 17-22 [22] GAUTAM D, GOEL L, AYYANAR R, et al. Control strategy to mitigate the impact of reduced inertia due to doubly fed induction generators on large power systems[J]. IEEE Transactions on Power Systems, 2011, 26(1): 14-224. [23] 李和明, 张祥宇, 王毅, 等. 基于功率跟踪优化的双馈风力发电机组虚拟惯性控制技术[J]. 中国电机工程学报, 2012, 32(7): 32-39, 188 LI Heming, ZHANG Xiangyu, WANG Yi, et al. Virtual inertia control of DFIG-based wind turbines based on the optimal power tracking[J]. Proceedings of the CSEE, 2012, 32(7): 32-39, 188 [24] 陈宇航, 王刚, 侍乔明, 等. 一种新型风电场虚拟惯量协同控制策略[J]. 电力系统自动化, 2015, 39(5): 27-33 CHEN Yuhang, WANG Gang, SHI Qiaoming, et al. A new coordinated virtual inertia control strategy for wind farms[J]. Automation of Electric Power Systems, 2015, 39(5): 27-33 [25] 吕志鹏, 盛万兴, 刘海涛, 等. 虚拟同步机技术在电力系统中的应用与挑战[J]. 中国电机工程学报, 2017, 37(2): 349-360 LÜ Zhipeng, SHENG Wanxing, LIU Haitao, et al. Application and challenge of virtual synchronous machine technology in power system[J]. Proceedings of the CSEE, 2017, 37(2): 349-360 [26] 程冲, 杨欢, 曾正, 等. 虚拟同步发电机的转子惯量自适应控制方法[J]. 电力系统自动化, 2015, 39(19): 82-89 CHENG Chong, YANG Huan, ZENG Zheng, et al. Rotor inertia adaptive control method of VSG[J]. Automation of Electric Power Systems, 2015, 39(19): 82-89 [27] 谢震, 孟浩, 张兴, 等. 基于定子虚拟阻抗的双馈风电机组虚拟同步控制策略[J]. 电力系统自动化, 2018, 42(9): 157-163, 187 XIE Zhen, MENG Hao, ZHANG Xing, et al. Virtual synchronous control strategy of DFIG-based wind turbines based on stator virtual impedance[J]. Automation of Electric Power Systems, 2018, 42(9): 157-163, 187 [28] ALMEIDA R G D, LOPES J A P. Participation of doubly fed induction wind generators in system frequency regulation[J]. IEEE Transactions on Power Systems, 2007, 22(3): 944-950. [29] 王济菘, 陈明亮. 虚拟惯量配合变桨控制的风机一次调频实验研究[J]. 电测与仪表, 2019, 56(23): 18-23 WANG Jisong, CHEN Mingliang. An experimental study on primary frequency regulation of D-PMSG with virtual inertia and pitch control[J]. Electrical Measurement & Instrumentation, 2019, 56(23): 18-23 [30] 胡家欣, 胥国毅, 毕天姝, 等. 减载风电机组变速变桨协调频率控制方法[J]. 电网技术, 2019, 43(10): 3656-3663 HU Jiaxin, XU Guoyi, BI Tianshu, et al. A strategy of frequency control for deloaded wind turbine generator based on coordination between rotor speed and pitch angle[J]. Power System Technology, 2019, 43(10): 3656-3663 [31] 李生虎, 朱国伟. 基于有功备用的风电机组一次调频能力及调频效果分析[J]. 电工电能新技术, 2015, 34(10): 28-33, 50 LI Shenghu, ZHU Guowei. Capability and effect of primary frequency regulation by wind turbine generators with active power reserve[J]. Advanced Technology of Electrical Engineering and Energy, 2015, 34(10): 28-33, 50 [32] 丁磊, 尹善耀, 王同晓, 等. 结合超速备用和模拟惯性的双馈风机频率控制策略[J]. 电网技术, 2015, 39(9): 2385-2391 DING Lei, YIN Shanyao, WANG Tongxiao, et al. Integrated frequency control strategy of DFIGs based on virtual inertia and over-speed control[J]. Power System Technology, 2015, 39(9): 2385-2391 [33] 张昭遂, 孙元章, 李国杰, 等. 超速与变桨协调的双馈风电机组频率控制[J]. 电力系统自动化, 2011, 35(17): 20-25, 43 ZHANG Zhaosui, SUN Yuanzhang, LI Guojie, et al. Frequency regulation by doubly fed induction generator wind turbines based on coordinated overspeed control and pitch control[J]. Automation of Electric Power Systems, 2011, 35(17): 20-25, 43 [34] XU H, XIA A, HU S, et al. Control of variable-speed variable-pitch wind turbine with doubly-fed induction generator under highly turbulent conditions[C]//IEEE PES Innovative Smart Grid Technologies. IEEE, 2012. [35] BANHAM-HALL D D, TAYLOR G A, SMITH C A, et al. Frequency control using Vanadium redox flow batteries on wind farms[C]//Energy Society General Meeting. IEEE, 2011. [36] 唐西胜, 苗福丰, 齐智平, 等. 风力发电的调频技术研究综述[J]. 中国电机工程学报, 2014, 34(25): 4304-4314 TANG Xisheng, MIAO Fufeng, QI Zhiping, et al. Survey on frequency control of wind power[J]. Proceedings of the CSEE, 2014, 34(25): 4304-4314 [37] SEBASTIÁN R. Application of a battery energy storage for frequency regulation and peak shaving in a wind diesel power system[J]. IET Generation, Transmission and Distribution, 2016, 10(3): 764-770. [38] TAN J, ZHANG Y C. Coordinated control strategy of a battery energy storage system to support a wind power plant providing multi-timescale frequency ancillary services[J]. IEEE Transactions on Sustainable Energy, 2017, 8(3): 1140-1153. [39] MIAO L, WEN J Y, XIE H L, et al. Coordinated control strategy of wind turbine generator and energy storage equipment for frequency support[J]. IEEE Transactions on Industry Applications, 2015, 51(4): 2732-2742. [40] BAONE C A, DEMARCO C L. From each according to its ability: distributed grid regulation with bandwidth and saturation limits in wind generation and battery storage[J]. IEEE Transactions on Control Systems Technology, 2013, 21(2): 384-394. [41] ZHANG S Q, MISHRA Y, SHAHIDEHPOUR M. Fuzzy-logic based frequency controller for wind farms augmented with energy storage systems[J]. IEEE Transactions on Power Systems, 2016, 31(2): 1595-1603. [42] 林俐, 王世谦, 谭娟. 计及系统调频需求的风电场有功调整方法[J]. 中国电力, 2011, 44(9): 22-25 LIN Li, WANG Shiqian, TAN Juan. Wind power control considering system frequency regulation[J]. Electric Power, 2011, 44(9): 22-25 [43] 何成明, 王洪涛, 孙华东, 等. 变速风电机组调频特性分析及风电场时序协同控制策略[J]. 电力系统自动化, 2013, 37(9): 1-6, 59 HE Chengming, WANG Hongtao, SUN Huadong, et al. Analysis on frequency control characteristics of variable speed wind turbines and coordinated frequency control strategy of wind farm[J]. Automation of Electric Power Systems, 2013, 37(9): 1-6, 59 [44] 张健, 李文锋, 王晖, 等. 多电源梯级调频方案及风电场级调频时序优化策略[J]. 电力系统自动化, 2019, 43(15): 93-104 ZHANG Jian, LI Wenfeng, WANG Hui, et al. Multi-source cascaded frequency modulation scheme and time-sequence optimization strategy of frequency modulation at level of wind farm[J]. Automation of Electric Power Systems, 2019, 43(15): 93-104 [45] 杨正清. 基于风电主动功率控制的风电场参与系统调频问题研究[D]. 杭州: 浙江大学, 2016. YANG Zhengqing. Wind farm’s participating in grid frequency regulation through active power control[D]. Hangzhou: Zhejiang University, 2016. [46] 王凡, 李海峰, 胥国毅, 等. 调频关键参数对电网频率特性的影响及其灵敏度分析[J]. 电力系统保护与控制, 2020, 48(20): 1-8 WAGN Fan, LI Haifeng, XU Guoyi, et al. Influence of key parameters of frequency control on frequency characteristics of power grid and sensitivity analysis[J]. Power System Protection and Control, 2020, 48(20): 1-8 [47] DOHERTY R, MULLANE A, NOLAN G, et al. An assessment of the impact of wind generation on system frequency control[J]. IEEE Transactions on Power Systems, 2010, 25(1): 452-460. [48] 包宇庆, 李扬, 王春宁, 等. 需求响应参与大规模风电接入下的电力系统频率调节研究[J]. 电力系统保护与控制, 2015, 43(4): 32-37 BAO Yuqing, LI Yang, WANG Chunning, et al. On demand response participating in the frequency control of the grid under high wind penetration[J]. Power System Protection and Control, 2015, 43(4): 32-37 [49] REPLAN Project: Project overview[EB/OL]. [2020-04-23]. https://www.replanproject.dk/project-overview. [50] MEEGAHAPOLA L, FLYNN D. Impact on transient and frequency stability for a power system at very high wind penetration[C]//IEEE PES General Meeting. IEEE, 2010: 1-8. [51] 李斯雯. 双馈感应风电机组参与电力系统调频的控制策略研究[D]. 兰州: 兰州理工大学, 2015. LI Siwen. Control strategy of DFIG-based wind turbines for power system frequency regulation[D]. Lanzhou: Lanzhou University of Technology, 2015. [52] 刘子洲. 风电接入对电力系统频率动态特性影响机理的研究[D]. 徐州: 中国矿业大学, 2019. LIU Zizhou. Research on frequency dynamic characteristic of power system integrated with wind power[D]. Xuzhou: China University of Mining and Technology, 2019. [53] Australian Energy Market Operator. Black system south Australia 28 September 2016—final report[R]. Australian Energy Market Operator Limited, 2016. [54] 曾辉, 孙峰, 李铁, 等. 澳大利亚“9·28”大停电事故分析及对中国启示[J]. 电力系统自动化, 2017, 41(13): 1-6 ZENG Hui, SUN Feng, LI Tie, et al. Analysis of “9·28” blackout in south Australia and its enlightenment to China[J]. Automation of Electric Power Systems, 2017, 41(13): 1-6 [55] National Grid ESO. Technical report on the events of 9 August 2019[R]. 2019. [56] 方勇杰. 英国“8·9”停电事故对频率稳定控制技术的启示[J]. 电力系统自动化, 2019, 43(24): 1-7 FANG Yongjie. Reflections on frequency stability control technology based on the blackout event of 9 August 2019 in UK[J]. Automation of Electric Power Systems, 2019, 43(24): 1-7 [57] The European Union. Commission regulation (EU) 631/2016 (network code)[R]. 2007. [58] 李军徽, 冯喜超, 严干贵, 等. 高风电渗透率下的电力系统调频研究综述[J]. 电力系统保护与控制, 2018, 46(2): 163-170 LI Junhui, FENG Xichao, YAN Gangui, et al. Survey on frequency regulation technology in high wind penetration power system[J]. Power System Protection and Control, 2018, 46(2): 163-170 [59] E ON Netz GmbH. Grid connection regulations for high and extra high voltage[R]. Bayreuth: E ON Netz GmbH, 2006. [60] Eskom System Operations and Planning Division. Grid code requirements for wind energy facilities connected to distribution or transmission system in south Africa (version 4.4)[S]. 2012. [61] 电力系统安全稳定导则: GB/T 38755—2019[S]. 北京: 中国标准出版社, 2019. [62] 饶建业, 徐小东, 何肇, 等. 中外风电并网技术规定对比[J]. 电网技术, 2012, 36(8): 44-49 RAO Jianye, XU Xiaodong, HE Zhao, et al. Comparison on technical regulations of China and other countries for grid-connection of wind farms[J]. Power System Technology, 2012, 36(8): 44-49 [63] DUVAL J, MEYER B. Frequency behavior of grid with high penetration rate of wind generation[C]//2009 IEEE Buchares in Power Technology, Bucharest: IEEE, 2009: 1-6. [64] Hydro-Québec TransÉnergie. Transmission provider technical requirements for the connection of power plants to the Hydro-Québec transmission system[R]. Quebec: Hydro-Québec TransÉnergie, February 2009. |
[1] | JI Zhanyang, HU Yang, KONG Lingxing, SONG Ziqiu, DENG Dan, LIU Jizhen. Dynamic Modeling and Simulation of Wind Turbine Unit Primary Frequency Regulation Considering Multi-domain Coupling Characteristics [J]. Electric Power, 2025, 58(4): 56-67. |
[2] | LUO Hongbo, QIN Shiyao, GUO Zixuan, LI Guanghui. Modeling and Analysis of Transient Overvoltage of Direct Drive Wind Turbine Under Symmetrical Faults [J]. Electric Power, 2025, 58(4): 68-77, 97. |
[3] | Lei ZHANG, Xiaowei MA, Manliang WANG, Li CHEN, Bingtuan GAO. Distributed Collaborative Control Strategy for Intra-regional AGC Units in Interconnected Power System with Renewable Energy [J]. Electric Power, 2025, 58(3): 8-19. |
[4] | Li FENG, Lianmei ZHANG, Jiajia WEI, Changhong DENG, Guo LI, Jiayue YIN. Development & Thinking of Offshore Wind Power Based on Life Cycle Economic Evaluation [J]. Electric Power, 2024, 57(9): 80-93. |
[5] | Zhongqi LIU, Yao LIU, Jinming HOU. Economic Analysis of Energy Transmission for Energy Island Based on Deep-Sea Offshore Wind Farms [J]. Electric Power, 2024, 57(9): 94-102. |
[6] | Wenjin JIANG, Qiaomei LIU, Xiaodong YANG, Dingfei QUE, Yu SHEN, Xianan HUANG, Zhenhua LAI. Optimal Allocation of Offshore Wind Power-Multiple Energy Storage System Considering Gas-Solid Two-Phase Hydrogen Storage Characteristics [J]. Electric Power, 2024, 57(9): 103-112. |
[7] | Ningbo HUANG, Jianwei GAO, Chuanbo XU, Xuanhua XU, Shutong ZHAO, Xunjie GOU, Xiaojing JIANG. Site Selection of Offshore Wind Power-Hydrogen Production and Refueling Ports Based on Empirical Mining and Hybrid Linguistic Approach [J]. Electric Power, 2024, 57(9): 113-123. |
[8] | Zhuan ZHOU, Shuai MIAO, Tiejiang YUAN. System Dynamics Modeling of Green Hydrogen Steel Smelting to Improve Wind Power Consumption [J]. Electric Power, 2024, 57(8): 36-45. |
[9] | Luyang LI, Longxiang CHEN, Lei CHEN, Dawei SUN, Linlin WU, Yong MIN. Research on Economic Configuration of Energy Storage for Assisting New Energy in Primary Frequency Regulation [J]. Electric Power, 2024, 57(7): 54-65. |
[10] | Jiayan HAN, Yanling LÜ, Chong ZHOU. Multi-mode Control Method of Gravity Energy Storage DC Link Battery [J]. Electric Power, 2024, 57(7): 66-73. |
[11] | Yibin WANG, Feixiong CHEN, Zhenguo SHAO, Shuling ZHANG, Weijun ZHANG, Zhicheng LI. Two-stage Frequency Regulation Method for Energy Storage Coordinated with Thermal Power Unit Based on Weight Coefficient Correction [J]. Electric Power, 2024, 57(3): 83-94. |
[12] | Wenfei YI, Weiping ZHU, Mingzhong ZHENG. Economic Dispatch of Microgrid Considering Data Center and Wind Power Uncertainty [J]. Electric Power, 2024, 57(2): 19-26. |
[13] | Guohua YANG, Xin QI, Rui JIA, Yifeng LIU, Fei MENG, Xin MA, Xiaowen XING. Short-Term Wind Power Forecast Based on CNN&LSTM-GRU Model Integrated with CEEMD-SE Algorithm [J]. Electric Power, 2024, 57(2): 55-61. |
[14] | Dan LI, Yunyan LIANG, Shuwei MIAO, Zeren FANG, Yue HU, Shuai HE. Daily Power Scenario Generation Method for Multiple Wind Farms Based on Gaussian Mixture Clustering and Improved Conditional Variational Autoencoder [J]. Electric Power, 2024, 57(12): 17-29. |
[15] | Mingyuan WAN, Xin REN, Du WANG, Yafei JIN, Zhigang WANG, Tingju WANG, Changhong YANG, Haokun LIU. Study of Dynamic Characteristics of 100 MW Cascade S-CO2 Cycle [J]. Electric Power, 2024, 57(12): 169-177. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||