Electric Power ›› 2024, Vol. 57 ›› Issue (2): 55-61.DOI: 10.11930/j.issn.1004-9649.202302098
• Low-Carbon Planning and Operation for New-Type Power Systems • Previous Articles Next Articles
Guohua YANG1(), Xin QI2, Rui JIA1, Yifeng LIU2, Fei MENG2, Xin MA1, Xiaowen XING1
Received:
2023-02-27
Accepted:
2023-05-28
Online:
2024-02-23
Published:
2024-02-28
Supported by:
CLC Number:
Guohua YANG, Xin QI, Rui JIA, Yifeng LIU, Fei MENG, Xin MA, Xiaowen XING. Short-Term Wind Power Forecast Based on CNN&LSTM-GRU Model Integrated with CEEMD-SE Algorithm[J]. Electric Power, 2024, 57(2): 55-61.
分量 | SE值 | 分量 | SE值 | |||
IMF1 | 1.22372 | IMF7 | 0.35957 | |||
IMF2 | 1.01075 | IMF8 | 0.12358 | |||
IMF3 | 0.75592 | IMF9 | 0.02324 | |||
IMF4 | 0.67636 | IMF10 | 0.00304 | |||
IMF5 | 0.65487 | RES | 0.00046 | |||
IMF6 | 0.60424 |
Table 1 SE values of IMF1-IMF10 and Res
分量 | SE值 | 分量 | SE值 | |||
IMF1 | 1.22372 | IMF7 | 0.35957 | |||
IMF2 | 1.01075 | IMF8 | 0.12358 | |||
IMF3 | 0.75592 | IMF9 | 0.02324 | |||
IMF4 | 0.67636 | IMF10 | 0.00304 | |||
IMF5 | 0.65487 | RES | 0.00046 | |||
IMF6 | 0.60424 |
预测模型 | RMSE/MW | MAE/MW | R2 | |||
PSO-SVR | 2.505 | 1.947 | 0.928 | |||
LSTM | 2.322 | 1.767 | 0.938 | |||
CNN-LSTM | 2.198 | 1.656 | 0.944 | |||
CNN&LSTM-GRU | 1.867 | 1.404 | 0.962 |
Table 2 Comparison of prediction results of various models
预测模型 | RMSE/MW | MAE/MW | R2 | |||
PSO-SVR | 2.505 | 1.947 | 0.928 | |||
LSTM | 2.322 | 1.767 | 0.938 | |||
CNN-LSTM | 2.198 | 1.656 | 0.944 | |||
CNN&LSTM-GRU | 1.867 | 1.404 | 0.962 |
1 | 向玲, 邓泽奇, 赵玥. 基于LPF-VMD和KELM的风速多步预测模型[J]. 电网技术, 2019, 43 (12): 4461- 4467. |
XIANG Ling, DENG Zeqi, ZHAO Yue. Multi-step wind speed prediction model based on LPF-VMD and KELM[J]. Power System Technology, 2019, 43 (12): 4461- 4467. | |
2 | 姜兆宇, 贾庆山, 管晓宏. 多时空尺度的风力发电预测方法综述[J]. 自动化学报, 2019, 45 (1): 51- 71. |
JIANG Zhaoyu, JIA Qingshan, GUAN Xiaohong. A review of multi-temporal-and-spatial-scale wind power forecasting method[J]. Acta Automatica Sinica, 2019, 45 (1): 51- 71. | |
3 | 王瑞, 陈泽坤, 逯静. 基于VMD和IBA-LSSVM的短期风电功率预测[J]. 河海大学学报(自然科学版), 2021, 49 (6): 575- 582. |
WANG Rui, CHEN Zekun, LU Jing. Short term prediction of wind power based on VMD and IBA-LSSVM[J]. Journal of Hohai University (Natural Sciences), 2021, 49 (6): 575- 582. | |
4 | 陈子含, 滕伟, 胥学峰, 等. 基于图卷积网络和风速差分拟合的中长期风功率预测[J]. 中国电力, 2023, 56 (10): 96- 105. |
CHEN Zihan, TENG Wei, XU Xuefeng, et al. Medium and long term wind power prediction based on graph convolutional network and wind velocity differential fitting[J]. Electric Power, 2023, 56 (10): 96- 105. | |
5 | 杜宇龙, 徐天奇, 李琰, 等. 基于自适应扩散核密度分布的风电功率预测误差分析研究[J]. 智慧电力, 2021, 49 (11): 51- 58. |
DU Yulong, XU Tianqi, LI Yan, et al. Analysis of wind power prediction error based on adaptive diffusion kernel density distribution[J]. Smart Power, 2021, 49 (11): 51- 58. | |
6 | 沙骏, 徐雨森, 刘冲冲, 等. 基于变分模态分解和分位数卷积-循环神经网络的短期风功率预测[J]. 中国电力, 2022, 55 (12): 61- 68. |
SHA Jun, XU Yusen, LIU Chongchong, et al. Short-term wind power prediction based on variational modal decomposition and quantile convolution-recurrent neural network[J]. Electric Power, 2022, 55 (12): 61- 68. | |
7 | 陈峰, 余轶, 徐敬友, 等. 基于Bayes-LSTM网络的风电出力预测方法[J]. 电力系统保护与控制, 2023, 51 (6): 170- 178. |
CHEN Feng, YU Yi, XU Jingyou, et al. Prediction method of wind power output based on a Bayes-LSTM network[J]. Power System Protection and Control, 2023, 51 (6): 170- 178. | |
8 |
WANG Y, ZHANG N, KANG C Q, et al. An efficient approach to power system uncertainty analysis with high-dimensional dependencies[J]. IEEE Transactions on Power Systems, 2018, 33 (3): 2984- 2994.
DOI |
9 | 牛东晓, 纪会争. 风电功率物理预测模型引入误差量化分析方法[J]. 电力系统自动化, 2020, 44 (8): 57- 65. |
NIU Dongxiao, JI Huizheng. Quantitative analysis method for errors introduced by physical prediction model of wind power[J]. Automation of Electric Power Systems, 2020, 44 (8): 57- 65. | |
10 | 杨茂, 黄宾阳. 基于灰色缓冲算子-卡尔曼滤波双修正的风电功率实时预测研究[J]. 可再生能源, 2017, 35 (1): 101- 109. |
YANG Mao, HUANG Binyang. Wind power real-time prediction based on grey buffer operator-Kalman filtering dual correction research[J]. Renewable Energy Resources, 2017, 35 (1): 101- 109. | |
11 | 丁藤, 冯冬涵, 林晓凡, 等. 基于修正后ARIMA-GARCH模型的超短期风速预测[J]. 电网技术, 2017, 41 (6): 1808- 1814. |
DING Teng, FENG Donghan, LIN Xiaofan, et al. Ultra-short-term wind speed forecasting based on improved ARIMA-GARCH model[J]. Power System Technology, 2017, 41 (6): 1808- 1814. | |
12 | 杨茂, 黄宾阳, 江博. 基于概率分布量化指标和灰色关联决策的风电功率实时预测研究[J]. 中国电机工程学报, 2017, 37 (24): 7099- 7107, 7424. |
YANG Mao, HUANG Binyang, JIANG Bo. Real-time wind power prediction based on probability distribution and gray relational decision-making[J]. Proceedings of the CSEE, 2017, 37 (24): 7099- 7107, 7424. | |
13 | 杨德友, 高子昂, 李音璇. 基于双变量经验模态分解和最小二乘支持向量机的风电功率区间预测[J]. 电力建设, 2019, 40 (5): 118- 127. |
YANG Deyou, GAO Ziang, LI Yinxuan. Interval prediction of wind power based on bivariate empirical mode decomposition and least squares support vector machine[J]. Electric Power Construction, 2019, 40 (5): 118- 127. | |
14 |
WAN C, XU Z, PINSON P, et al. Probabilistic forecasting of wind power generation using extreme learning machine[J]. IEEE Transactions on Power Systems, 2014, 29 (3): 1033- 1044.
DOI |
15 | 李俊卿, 李秋佳. 基于Kriging和长短期记忆网络的风电功率预测方法[J]. 太阳能学报, 2020, 41 (11): 241- 247. |
LI Junqing, LI Qiujia. Wind power prediction method based on Kriging and LSTM network[J]. Acta Energiae Solaris Sinica, 2020, 41 (11): 241- 247. | |
16 | 王依宁, 解大, 王西田, 等. 基于PCA-LSTM模型的风电机网相互作用预测[J]. 中国电机工程学报, 2019, 39 (14): 4070- 4081. |
WANG Yining, XIE Da, WANG Xitian, et al. Prediction of interaction between grid and wind farms based on PCA-LSTM model[J]. Proceedings of the CSEE, 2019, 39 (14): 4070- 4081. | |
17 | 牛哲文, 余泽远, 李波, 等. 基于深度门控循环单元神经网络的短期风功率预测模型[J]. 电力自动化设备, 2018, 38 (5): 36- 42. |
NIU Zhewen, YU Zeyuan, LI Bo, et al. Short-term wind power forecasting model based on deep gated recurrent unit neural network[J]. Electric Power Automation Equipment, 2018, 38 (5): 36- 42. | |
18 | 肖迁, 李文华, 李志刚, 等. 基于改进的小波-BP神经网络的风速和风电功率预测[J]. 电力系统保护与控制, 2014, 42 (15): 80- 86. |
XIAO Qian, LI Wenhua, LI Zhigang, et al. Wind speed and power prediction based on improved wavelet-BP neural network[J]. Power System Protection and Control, 2014, 42 (15): 80- 86. | |
19 | 王佶宣, 邓斌, 王江. 基于经验模态分解与RBF神经网络的短期风功率预测[J]. 电力系统及其自动化学报, 2020, 32 (11): 109- 115. |
WANG Jixuan, DENG Bin, WANG Jiang. Short-term wind power prediction based on empirical mode decomposition and RBF neural network[J]. Proceedings of the CSU-EPSA, 2020, 32 (11): 109- 115. | |
20 |
HE Y Y, WANG Y. Short-term wind power prediction based on EEMD–LASSO–QRNN model[J]. Applied Soft Computing, 2021, 105, 107288.
DOI |
21 | 周小麟, 童晓阳. 基于CEEMD-SBO-LSSVR的超短期风电功率组合预测[J]. 电网技术, 2021, 45 (3): 855- 864. |
ZHOU Xiaolin, TONG Xiaoyang. Ultra-short-term wind power combined prediction based on CEEMD-SBO-LSSVR[J]. Power System Technology, 2021, 45 (3): 855- 864. | |
22 |
LI X Y, DAI K W, WANG Z P, et al. Lithium-ion batteries fault diagnostic for electric vehicles using sample entropy analysis method[J]. Journal of Energy Storage, 2020, 27, 101121.
DOI |
23 | 曾亮, 狄飞超, 兰欣, 等. 基于CEEMD-CNN-BiGRU-RF模型的短期风电功率预测[J]. 可再生能源, 2022, 40 (2): 190- 195. |
ZENG Liang, DI Feichao, LAN Xin, et al. Short-term wind power prediction based on CEEMD-CNN-BiGRU-RF model[J]. Renewable Energy Resources, 2022, 40 (2): 190- 195. | |
24 | 贾睿, 杨国华, 郑豪丰, 等. 基于自适应权重的CNN-LSTM&GRU组合风电功率预测方法[J]. 中国电力, 2022, 55 (5): 47- 56. |
JIA Rui, YANG Guohua, ZHENG Haofeng, et al. Combined wind power prediction method based on CNN-LSTM & GRU with adaptive weights[J]. Electric Power, 2022, 55 (5): 47- 56. | |
25 |
KISVARI A, LIN Z, LIU X L. Wind power forecasting–A data-driven method along with gated recurrent neural network[J]. Renewable Energy, 2021, 163, 1895- 1909.
DOI |
[1] | Bilin SHAO, Danyang JI. Multi-feature Short-term Prediction of Power Load Components Based on VMD-SE [J]. Electric Power, 2024, 57(4): 162-170. |
[2] | ZHAO Huiru, ZHAO Yihang, GUO Sen. Short-Term Load Forecasting Based on Complementary Ensemble Empirical Mode Decomposition and Long Short-Term Memory [J]. Electric Power, 2020, 53(6): 48-55. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||