Electric Power ›› 2024, Vol. 57 ›› Issue (9): 80-93.DOI: 10.11930/j.issn.1004-9649.202308096
• Technical Economy, Planning and Operation, and Policy Mechanisms of Offshore Wind Power Hydrogen Production • Previous Articles Next Articles
					
													Li FENG1,2(
), Lianmei ZHANG1,2(
), Jiajia WEI1,2, Changhong DENG1,2(
), Guo LI3, Jiayue YIN3
												  
						
						
						
					
				
Received:2023-08-24
															
							
															
							
																	Accepted:2023-11-22
															
							
																	Online:2024-09-23
															
							
							
																	Published:2024-09-28
															
							
						Supported by:Li FENG, Lianmei ZHANG, Jiajia WEI, Changhong DENG, Guo LI, Jiayue YIN. Development & Thinking of Offshore Wind Power Based on Life Cycle Economic Evaluation[J]. Electric Power, 2024, 57(9): 80-93.
| 项目 | HVAC | HVDC | FFTS | |||
| 传输距离/km | <70 | >70 | >70 | |||
| 传输容量/MW | <800 | > | > | |||
| 技术成熟度 | 高 | 高 | 低 | |||
| 海上平台 | 无功补偿 | 换流器 | — | |||
| 投资维护成本 | 低 | 高 | 低 | |||
| 电缆成本/(万元·km–1) | 887~ | 550[ | 550[ | |||
| 运行费用[ | 较高 | 较低 | 较低 | |||
| 典型项目 | 丹麦Horns Rev Ⅱ | 德国Helwin1-2 | — | 
Table 1 Comparison of 3 grid-connected transmission technologies and economies for OWP
| 项目 | HVAC | HVDC | FFTS | |||
| 传输距离/km | <70 | >70 | >70 | |||
| 传输容量/MW | <800 | > | > | |||
| 技术成熟度 | 高 | 高 | 低 | |||
| 海上平台 | 无功补偿 | 换流器 | — | |||
| 投资维护成本 | 低 | 高 | 低 | |||
| 电缆成本/(万元·km–1) | 887~ | 550[ | 550[ | |||
| 运行费用[ | 较高 | 较低 | 较低 | |||
| 典型项目 | 丹麦Horns Rev Ⅱ | 德国Helwin1-2 | — | 
| 指标 | 优点 | 不足 | ||
| PVC | 兼顾成本、寿命、通货膨胀等因素,适应性强 | 贴现率难以确定;现金流较难预测;跨地区的经济性和技术水平难以比较 | ||
| NPV | 直观反映收入成本关系,考虑实际寿命 | 仅体现当前项目成本,项目横向对比困难,无法体现建设规模 | ||
| IRR | 考虑时间价值与设计寿命;投资回报效益明显 | 跨地区的经济技术水平难以比较;现金流难以预测;无法体现建设规模与设计寿命 | ||
| PBP | 直观看出成本回收速度;考虑实际寿命 | 跨地区的经济技术水平难以比较; 现金流较难预测;无法体现建设规模与设计寿命 | ||
| ROI | 投资利益明显,突出资源优化 | 未考虑时间成本;现金流预测困难;整体性不突出 | ||
| LCOE | 强适应性;成本综合 | 参数多;计算复杂;不确定因素多 | 
Table 2 Comparison of 6 indicators for economic evaluation of offshore wind power
| 指标 | 优点 | 不足 | ||
| PVC | 兼顾成本、寿命、通货膨胀等因素,适应性强 | 贴现率难以确定;现金流较难预测;跨地区的经济性和技术水平难以比较 | ||
| NPV | 直观反映收入成本关系,考虑实际寿命 | 仅体现当前项目成本,项目横向对比困难,无法体现建设规模 | ||
| IRR | 考虑时间价值与设计寿命;投资回报效益明显 | 跨地区的经济技术水平难以比较;现金流难以预测;无法体现建设规模与设计寿命 | ||
| PBP | 直观看出成本回收速度;考虑实际寿命 | 跨地区的经济技术水平难以比较; 现金流较难预测;无法体现建设规模与设计寿命 | ||
| ROI | 投资利益明显,突出资源优化 | 未考虑时间成本;现金流预测困难;整体性不突出 | ||
| LCOE | 强适应性;成本综合 | 参数多;计算复杂;不确定因素多 | 
| 补贴 | 净收益/万元 | LCOE/(元·(kW·h)–1) | IRR/% | PBP/年 | ||||
| 有 | 591 165 | 0.447 | 8.36 | 11.26 | ||||
| 无 | 93 834 | 3.29 | 17.79 | 
Table 3 Some economic indicators of western Guangdong OWP projects
| 补贴 | 净收益/万元 | LCOE/(元·(kW·h)–1) | IRR/% | PBP/年 | ||||
| 有 | 591 165 | 0.447 | 8.36 | 11.26 | ||||
| 无 | 93 834 | 3.29 | 17.79 | 
| 1 | GWEC. Global offshore wind report 2022[R]. Brussels: Global Wind Energy Council, 2023. | 
| 2 | MUSIAL W, SPITSEN P, DUFFY P, et al. Offshore wind market report: 2022 edition[R]. Golden, CO: National Renewable Energy Lab(NREL), 2022. | 
| 3 |  
											赵靓. “十五五” 中国海上风电度电成本展望[J]. 风能, 2023, (2): 34- 37. 
																							 DOI  | 
										
| 4 | CHEN L J, ZHANG L G, KUNG C C. An economic analysis on Taiwanese wind power and regional development[J]. Energy Exploration & Exploitation, 2020, 38 (4): 1228- 1247. | 
| 5 | 严新荣, 张宁宁, 马奎超, 等. 我国海上风电发展现状与趋势综述[J]. 发电技术, 2024, 45 (1): 1- 12. | 
| YAN Xinrong, ZHANG Ningning, MA Kuichao, et al. Overview of current situation and trend of offshore wind power development in China[J]. Power Generation Technology, 2024, 45 (1): 1- 12. | |
| 6 | 祝海滨. 基于全生命周期的风力发电项目财务可行性分析[D]. 上海: 华东理工大学, 2017. | 
| ZHU Haibin. Financial Feasibility analysis of wind power generation projects based on the whole life cycle[D]. Shanghai: East China University of Science and Technology, 2017. | |
| 7 | KOST C, MAYER J. Levelized cost of electricity renewable energy technologies[R]. Freiburg: Fraunhofer Institute for Solar Energy System, 2013. | 
| 8 | 宋冬然, 梁梓昂, 夏鄂, 等. 风电全生命周期成本建模与经济分析综述[J]. 热力发电, 2023, 52 (3): 1- 12. | 
| SONG Dongran, LIANG Ziang, XIA E, et al. Overview of wind power life-cycle cost modeling and economic analysis[J]. Thermal Power Generation, 2023, 52 (3): 1- 12. | |
| 9 |  
											刘胜强, 贺升, 周益辉, 等. 风电叶片废弃物回收技术综述[J]. 中国资源综合利用, 2021, 39 (11): 109- 111. 
																							 DOI  | 
										
|  
											LIU Shengqiang, HE Sheng, ZHOU Yihui, et al. Overview of wind turbine blade waste recovery technology[J]. China Resources Comprehensive Utilization, 2021, 39 (11): 109- 111. 
																							 DOI  | 
										|
| 10 | MAIENZA C, AVOSSA A M, PICOZZI V, et al. Feasibility analysis for floating offshore wind energy[J]. The International Journal of Life Cycle Assessment, 2022: 796-812. | 
| 11 |  
											GARCIA-TERUEL A, RINALDI G, THIES P R, et al. Life cycle assessment of floating offshore wind farms: an evaluation of operation and maintenance[J]. Applied Energy, 2022, 307, 118067. 
																							 DOI  | 
										
| 12 |  
											PAKENHAM B, ERMAKOVA A, MEHMANPARAST A. A review of life extension strategies for offshore wind farms using techno-economic assessments[J]. Energies, 2021, 14 (7): 1936. 
																							 DOI  | 
										
| 13 |  
											MYTILINOU V, KOLIOS A J. Techno-economic optimisation of offshore wind farms based on life cycle cost analysis on the UK[J]. Renewable Energy, 2019, 132, 439- 454. 
																							 DOI  | 
										
| 14 |  
											SHAMSAN A, SALAH A W, LIM S E, et al. Life cycle cost assessment of offshore wind farm: kudat Malaysia case[J]. Sustainability, 2021, 13 (14): 7943. 
																							 DOI  | 
										
| 15 | SHAFIEE M, BRENNAN F, ESPINOSA I A. A parametric whole life cost model for offshore wind farms[J]. The International Journal of Life Cycle Assessment, 2016: 961–975. | 
| 16 | 樊启祥, 陈晓路, 王鑫. 海上风电项目全生命周期资产管理[J]. 项目管理评论, 2022, (2): 72- 77. | 
| 17 | 颜向松. 海上风电项目技术经济及融资策略研究[J]. 财经界, 2022, (24): 60- 62. | 
| 18 |  
											夏云峰. 2023—2032年全球海上风电有望新增装机380GW[J]. 风能, 2023, (10): 42- 45. 
																							 DOI  | 
										
| 19 | 张瑞刚, 王冰佳, 王杰彬, 等. 海上风电叶片行业优点及发展阻碍分析[J]. 船舶工程, 2020, 42 (S1): 523- 525. | 
| ZHANG Ruigang, WANG Bingjia, WANG Jiebin, et al. Advantages and development obstacles of offshore wind turbine blade industry[J]. Ship Engineering, 2020, 42 (S1): 523- 525. | |
| 20 | 国际风力发电网. 全球最大!明阳智能推出16 MW海上风机[EB/OL]. (2021-08-23) [2023-04-20]. https://wind.in-en.com/html/wind-2406135.shtml. | 
| 21 |  
											KOH J H, NG E Y K. Downwind offshore wind turbines: opportunities, trends and technical challenges[J]. Renewable and Sustainable Energy Reviews, 2016, 54, 797- 808. 
																							 DOI  | 
										
| 22 |  
											董誉. 风力发电装备的大型化发展及经济性分析[J]. 科技风, 2016, (2): 108. 
																							 DOI  | 
										
| 23 | 孙柏阳, 代川. 风电设备行业研究: 风机大型化驱动降本, 风电天花板打开[R]. 广州: 广发证券, 2021. | 
| 24 |  
											LIU R F, MA X, REN X J, et al. Comparative analysis of bearing current in wind turbine generators[J]. Energies, 2018, 11 (5): 1305. 
																							 DOI  | 
										
| 25 |  
											齐金玲, 李卫星, 朱蒙, 等. 直驱风机低电压穿越行为对并网点电压的影响及优化控制[J]. 电力系统自动化, 2023, 47 (7): 105- 113. 
																							 DOI  | 
										
|  
											QI Jinling, LI Weixing, ZHU Meng, et al. Impact of low voltage ride-through behavior of direct-driven wind turbine on voltage of grid-connected point and optimal control[J]. Automation of Electric Power Systems, 2023, 47 (7): 105- 113. 
																							 DOI  | 
										|
| 26 | JIN J X, YANG R H, ZHANG R T, et al. Combined low voltage ride through and power smoothing control for DFIG/PMSG hybrid wind energy conversion system employing a SMES-based AC-DC unified power quality conditioner[J]. International Journal of Electrical Power & Energy Systems, 2021, 128, 106733. | 
| 27 | 王鑫, 王海云, 王维庆. 大规模海上风电场电力输送方式研究[J]. 电测与仪表, 2020, 57 (22): 55- 62. | 
| WANG Xin, WANG Haiyun, WANG Weiqing. Research on power transmission mode of large-scale offshore wind farms[J]. Electrical Measurement & Instrumentation, 2020, 57 (22): 55- 62. | |
| 28 |  
											LAURIA S, SCHEMBARI M, PALONE F, et al. Very long distance connection of gigawatt-size offshore wind farms: extra high-voltage AC versus high-voltage DC cost comparison[J]. IET Renewable Power Generation, 2016, 10 (5): 713- 720. 
																							 DOI  | 
										
| 29 | 迟永宁, 梁伟, 张占奎, 等. 大规模海上风电输电与并网关键技术研究综述[J]. 中国电机工程学报, 2016, 36 (14): 3758- 3771. | 
| CHI Yongning, LIANG Wei, ZHANG Zhankui, et al. An overview on key technologies regarding power transmission and grid integration of large scale offshore wind power[J]. Proceedings of the CSEE, 2016, 36 (14): 3758- 3771. | |
| 30 | 刘卫东, 李奇南, 王轩, 等. 大规模海上风电柔性直流输电技术应用现状和展望[J]. 中国电力, 2020, 53 (7): 55- 71. | 
| LIU Weidong, LI Qinan, WANG Xuan, et al. Application status and prospect of VSC-HVDC technology for large-scale offshore wind farms[J]. Electric Power, 2020, 53 (7): 55- 71. | |
| 31 | 王邦彦, 王秀丽, 王碧阳, 等. 海上风电分频送出系统可靠性评估模型及方法[J]. 电网技术, 2022, 46 (8): 2899- 2909. | 
| WANG Bangyan, WANG Xiuli, WANG Biyang, et al. Reliability evaluation model and method of offshore wind power fractional frequency delivery system[J]. Power System Technology, 2022, 46 (8): 2899- 2909. | |
| 32 | 黄明煌, 王秀丽, 刘沈全, 等. 分频输电应用于深远海风电并网的技术经济性分析[J]. 电力系统自动化, 2019, 43 (5): 167- 174. | 
| HUANG Minghuang, WANG Xiuli, LIU Shenquan, et al. Technical and economic analysis on fractional frequency transmission system for integration of long-distance offshore wind farm[J]. Automation of Electric Power Systems, 2019, 43 (5): 167- 174. | |
| 33 | 葛维春, 张诗钽, 崔岱, 等. 海上风电送出与就地消纳技术差异综述[J]. 电测与仪表, 2022, 59(5): 23–32. | 
| HUANG Minghuang, WANG Xiuli, LIU Shenquan, et al. Technical and economic analysis on fractional frequency transmission system for integration of long-distance offshore wind farm[J]. Automation of Electric Power Systems, 2019, 43(5): 167–174. | |
| 34 |  
											杨源, 陈永淑, 陈亮. 海上风电配套储能系统方案研究[J]. 中国勘察设计, 2022, (增刊2): 59- 61. 
																							 DOI  | 
										
| 35 |  
											YU H, YANG X, CHEN H, et al. Energy Storage Capacity Planning Method for Improving Offshore Wind Power Consumption[J]. Sustainability, 2022, 14 (21): 14589. 
																							 DOI  | 
										
| 36 |  
											YUDHISTIRA R, KHATIWADA D, SANCHEZ F. A comparative life cycle assessment of lithium-ion and lead-acid batteries for grid energy storage[J]. Journal of Cleaner Production, 2022, 358, 131999. 
																							 DOI  | 
										
| 37 |  
											高捷, 赵斌, 杨超, 等. 海上储能技术发展动态与前景[J]. 新能源进展, 2020, 8 (2): 136- 142. 
																							 DOI  | 
										
|  
											GAO Jie, ZHAO Bin, YANG Chao, et al. Development and prospect of energy storage at sea[J]. Advances in New and Renewable Energy, 2020, 8 (2): 136- 142. 
																							 DOI  | 
										|
| 38 | 李丽旻. 海上风电配储经济性待考[N]. 中国能源报, 2020-11-09(9). | 
| 39 |  
											杜欣烨, 王建喜, 孙永辉, 等. 计及海水淡化制氢的微电网混合储能优化规划[J]. 综合智慧能源, 2022, 44 (5): 49- 55. 
																							 DOI  | 
										
|  
											DU Xinye, WANG Jianxi, SUN Yonghui, et al. Optimal planning of hybrid energy storage systems in microgrids considering seawater desalination and hydrogen production[J]. Integrated Intelligent Energy, 2022, 44 (5): 49- 55. 
																							 DOI  | 
										|
| 40 | 唐巍, 郭雨桐, 闫姝, 等. 多场景海上风电场关键设备技术经济性分析[J]. 中国电力, 2021, 54 (7): 178- 184, 216. | 
| TANG Wei, GUO Yutong, YAN Shu, et al. Tech-no-economic analysis of key equipment for offshore wind farms with multiple scenarios[J]. Electric Power, 2021, 54 (7): 178- 184, 216. | |
| 41 | SKAARE B, HANSON T D, NIELSEN F G. Importance of control strategies on fatigue life of floating wind turbines[J]. Proceedings of the 26th International Conference on Offshore Mechanics and Arctic Engineering, 2007, 5: 493–500. | 
| 42 | SULLIVAN R O. Offshore wind in Europe - Key trends and statics 2020 [R]. Brussels: Wind Europe, 2021. | 
| 43 | RODDIER D, CERMELLI C, AUBAULT A, et al. Summary and conclusions of the full life-cycle of the wind float FOWT prototype project[C]//Proceedings of ASME 2017 36th International Conference on Ocean, Offshore and Arctic Engineering, Trondheim, Norway. 2017. | 
| 44 | 姚遥. 新能源发电设备行业研究[R]. 上海: 国金证券, 2023. | 
| 45 |  
											RODDIER D, CERMELLI C, AUBAULT A, et al. WindFloat: a floating foundation for offshore wind turbines[J]. Journal of Renewable and Sustainable Energy, 2010, 2 (3): 33104. 
																							 DOI  | 
										
| 46 |  
											MATHERN A, VON DER HAAR C, MARX S. Concrete support structures for offshore wind turbines: current status, challenges, and future trends[J]. Energies, 2021, 14 (7): 1995. 
																							 DOI  | 
										
| 47 |  
											DRISCOLL F, JONKMAN J, ROBERTSON A, et al. Validation of a FAST model of the statoil- hywind demo floating wind turbine[J]. Energy Procedia, 2016, 94, 3- 19. 
																							 DOI  | 
										
| 48 | 李岩, 吴迪, 洪畅, 等. 大型海上风电场风机排布优化策略研究[J]. 太阳能, 2020, (2): 67- 74. | 
| LI Yan, WU Di, HONG Chang, et al. Optimization of wind turbine layout in large-scale offshore wind farm[J]. Solar Energy, 2020, (2): 67- 74. | |
| 49 | 黄六一, 王羿宁, 黄桂芳, 等. 海上风电场对鱼类福利的影响研究进展[J]. 水产学报, 2022, 46 (11): 2226- 2240. | 
| HUANG Liuyi, WANG Yining, HUANG Guifang, et al. Advances in research on the effects of offshore wind farm on fish welfare[J]. Journal of Fisheries of China, 2022, 46 (11): 2226- 2240. | |
| 50 |  
											DI TULLIO G R, MARIANI P, BENASSAI G, et al. Sustainable use of marine resources through offshore wind and mussel farm co-location[J]. Ecological Modelling, 2018, 367, 34- 41. 
																							 DOI  | 
										
| 51 | 卢凯. 低碳形势下火电企业能源规划研究——以大唐三门峡电厂为例[D]. 北京: 北京信息科技大学, 2015. | 
| 52 |  
											VAN DEN BURG S W K, RÖCKMANN C, BANACH J L, et al. Governing risks of multi-use: seaweed aquaculture at offshore wind farms[J]. Frontiers in Marine Science, 2020, 7, 60. 
																							 DOI  | 
										
| 53 | 黄伟捷, 江岳文. 远海风电输电和制氢经济可行性分析[J]. 中国电力, 2022, 55 (1): 91- 100. | 
| HUANG Weijie, JIANG Yuewen. Comparison of economic feasibilites between power transmission and hydrogen production from an offshore wind farm[J]. Electric Power, 2022, 55 (1): 91- 100. | |
| 54 |  
											张理, 叶斌, 尹晨旭, 等. 风电制氢经济性及发展前景分析[J]. 东北电力技术, 2020, 41 (7): 5- 9, 37. 
																							 DOI  | 
										
|  
											ZHANG Li, YE Bin, YIN Chenxu, et al. Economy and development prospects analysis of wind power hydrogen production[J]. Northeast Electric Power Technology, 2020, 41 (7): 5- 9, 37. 
																							 DOI  | 
										|
| 55 |  
											DINH V N, LEAHY P, MCKEOGH E, et al. Development of a viability assessment model for hydrogen production from dedicated offshore wind farms[J]. International Journal of Hydrogen Energy, 2021, 46 (48): 24620- 24631. 
																							 DOI  | 
										
| 56 |  
											纪钦洪, 于广欣, 黄海龙, 等. 海上风电制氢技术现状与发展趋势[J]. 中国海上油气, 2023, 35 (1): 179- 186. 
																							 DOI  | 
										
|  
											JI Qinhong, YU Guangxin, HUANG Hailong, et al. Present status and developing trend of offshore wind-to-hydrogen technology[J]. China Offshore Oil and Gas, 2023, 35 (1): 179- 186. 
																							 DOI  | 
										|
| 57 |  
											RUBERT T, MCMILLAN D, NIEWCZAS P. A decision support tool to assist with lifetime extension of wind turbines[J]. Renewable Energy, 2018, 120, 423- 433. 
																							 DOI  | 
										
| 58 |  
											IOANNOU A, ANGUS A, BRENNAN F. Parametric CAPEX, OPEX, and LCOE expressions for offshore wind farms based on global deployment parameters[J]. Energy Sources, Part B: Economics, Planning, and Policy, 2018, 13 (5): 281- 290. 
																							 DOI  | 
										
| 59 |  
											LAURA C S, VICENTE D C. Life-cycle cost analysis of floating offshore wind farms[J]. Renewable Energy, 2014, 66, 41- 48. 
																							 DOI  | 
										
| 60 | 马晋龙, 孙勇, 叶学顺. 欧洲海上风电规划机制和激励策略及其启示[J]. 中国电力, 2022, 55 (4): 1- 11, 92. | 
| MA Jinlong, SUN Yong, YE Xueshun. Planning mechanism and incentive strategies of European offshore wind power and their enlightenment[J]. Electric Power, 2022, 55 (4): 1- 11, 92. | |
| 61 |  
											CHEN J C, WANG F, STELSON K A. A mathematical approach to minimizing the cost of energy for large utility wind turbines[J]. Applied Energy, 2018, 228, 1413- 1422. 
																							 DOI  | 
										
| 62 |  
											ABEYNAYAKE G, LI G, JOSEPH T, et al. Reliability and cost-oriented analysis, comparison and selection of multi-level MVDC converters[J]. IEEE Transactions on Power Delivery, 2021, 36 (6): 3945- 3955. 
																							 DOI  | 
										
| 63 |  
											孙瑞娟, Gayan ABEYNAYAKE, 穆清, 等. 基于通用生成函数的海上风电集电系统可靠性与经济性评估[J]. 电力系统自动化, 2022, 46 (5): 159- 173. 
																							 DOI  | 
										
|  
											SUN Ruijuan, ABEYNAYAKE G, MU Qing, et al. Reliability and economic evaluation of offshore wind power collection system based on universal generating function[J]. Automation of Electric Power Systems, 2022, 46 (5): 159- 173. 
																							 DOI  | 
										|
| 64 |  
											PERVEEN R, KISHOR N, MOHANTY S R. Off-shore wind farm development: present status and challenges[J]. Renewable and Sustainable Energy Reviews, 2014, 29, 780- 792. 
																							 DOI  | 
										
| 65 |  
											AHN D, SHIN S C, KIM S Y, et al. Comparative evaluation of different offshore wind turbine installation vessels for Korean west-south wind farm[J]. International Journal of Naval Architecture and Ocean Engineering, 2017, 9 (1): 45- 54. 
																							 DOI  | 
										
| 66 |  
											SARKER B R, FAIZ T I. Minimizing transportation and installation costs for turbines in offshore wind farms[J]. Renewable Energy, 2017, 101, 667- 679. 
																							 DOI  | 
										
| 67 | 黄丹. 基于过程分析的海上风电承包项目盈利提升路径研究[D]. 天津: 天津大学, 2019. | 
| HUANG Dan. Profitable path analysis of offshore wind construction projects based on procedure analysis [D]. Tianjin: Tianjin University, 2019. | |
| 68 | 房方, 梁栋炀, 刘亚娟, 等. 海上风电智能控制与运维关键技术[J]. 发电技术, 2022, 43 (2): 175- 185. | 
| FANG Fang, LIANG Dongyang, LIU Yajuan, et al. Key technologies for intelligent control and operation and maintenance of offshore wind power[J]. Power Generation Technology, 2022, 43 (2): 175- 185. | |
| 69 |  
											COSTA ÁNGEL M, OROSA JOSÉ A, DIEGO V, et al. New tendencies in wind energy operation and maintenance[J]. Applied Sciences, 2021, 11 (4): 1386. 
																							 DOI  | 
										
| 70 |  
											陈皓勇, 谭科, 席松涛, 等. 海上风电的经营期成本计算模型[J]. 电力系统自动化, 2014, 38 (13): 135- 139. 
																							 DOI  | 
										
|  
											CHEN Haoyong, TAN Ke, XI Songtao, et al. A model for calculating operation period cost of offshore wind power[J]. Automation of Electric Power Systems, 2014, 38 (13): 135- 139. 
																							 DOI  | 
										|
| 71 | 陈述, 周露, 李智, 等. 计及气象可达性的海上风电运维效益仿真方法[J]. 太阳能学报, 2023, 44 (3): 104- 110. | 
| CHEN Shu, ZHOU Lu, LI Zhi, et al. Simulation method of offshore wind power operation and maintenance benefits considering weather accessibility[J]. Acta Energiae Solaris Sinica, 2023, 44 (3): 104- 110. | |
| 72 |  
											TUSAR M I H, SARKER B R. Maintenance cost minimization models for offshore wind farms: a systematic and critical review[J]. International Journal of Energy Research, 2022, 46 (4): 3739- 3765. 
																							 DOI  | 
										
| 73 | BJERKSETER C Å A. Levelised costs of energy for offshore floating wind turbine concepts[D]. Oslo: Norwegian University of Life Sciences, 2013. | 
| 74 |  
											IOANNOU A, ANGUS A, BRENNAN F. A lifecycle techno-economic model of offshore wind energy for different entry and exit instances[J]. Applied Energy, 2018, 221, 406- 424. 
																							 DOI  | 
										
| 75 |  
											TOPHAM E, MCMILLAN D, BRADLEY S, et al. Recycling offshore wind farms at decommissioning stage[J]. Energy Policy, 2019, 129, 698- 709. 
																							 DOI  | 
										
| 76 |  
											CHEN S Y, FENG H, ZHENG J, et al. Life cycle assessment and economic analysis of biomass energy technology in China: a brief review[J]. Processes, 2020, 8 (9): 1112. 
																							 DOI  | 
										
| 77 |  
											PIRES A L G, ROTELLA P Jr, MORIOKA S N, et al. Main trends and criteria adopted in economic feasibility studies of offshore wind energy: a systematic literature review[J]. Energies, 2021, 15 (1): 12. 
																							 DOI  | 
										
| 78 | 金长营. 海上风电项目全寿命周期的成本构成及其敏感性分析[J]. 太阳能, 2022, (3): 10- 16. | 
| JIN Changying. Cost composition of whole life cycle and sensitivity analysis of offshore wind power project[J]. Solar Energy, 2022, (3): 10- 16. | 
| Viewed | ||||||
| 
										Full text | 
									
										 | 
								|||||
| 
										Abstract | 
									
										 | 
								|||||
