Electric Power ›› 2025, Vol. 58 ›› Issue (5): 91-101.DOI: 10.11930/j.issn.1004-9649.202401114
• New Energy and Energy Storage • Previous Articles Next Articles
HU Changsheng(), BAI Zhijun, ZHANG Zhang, LI Jiankang, SHEN Ziyang(
)
Received:
2024-01-25
Online:
2025-05-30
Published:
2025-05-28
Supported by:
HU Changsheng, BAI Zhijun, ZHANG Zhang, LI Jiankang, SHEN Ziyang. Research on Capacity and Distribution Planning of Electric Hydrogen Production Considering Static Voltage Stability Margin[J]. Electric Power, 2025, 58(5): 91-101.
节点数 | 支路数 | PQ节点数 | PV节点数 | 基准容量/MW | ||||
39 | 46 | 29 | 9 | 100 |
Table 1 Basic information of IEEE 39 node system grid
节点数 | 支路数 | PQ节点数 | PV节点数 | 基准容量/MW | ||||
39 | 46 | 29 | 9 | 100 |
PV节点 | PQ节点 | PV节点 | PQ节点 | |||
Bus-30 | Bus-2 | Bus-36 | Bus-23 | |||
Bus-32 | Bus-10 | Bus-37 | Bus-25 | |||
Bus-33 | Bus-19 | Bus-38 | Bus-29 | |||
Bus-34 | Bus-20 | Bus-39 | Bus-1 | |||
Bus-35 | Bus-22 |
Table 2 PV-PQ node pair of IEEE 39 node system grid
PV节点 | PQ节点 | PV节点 | PQ节点 | |||
Bus-30 | Bus-2 | Bus-36 | Bus-23 | |||
Bus-32 | Bus-10 | Bus-37 | Bus-25 | |||
Bus-33 | Bus-19 | Bus-38 | Bus-29 | |||
Bus-34 | Bus-20 | Bus-39 | Bus-1 | |||
Bus-35 | Bus-22 |
项目 | 上限 | 备注 | ||
电解槽制氢投资成本/(元·kW–1) | 3 500 | |||
氢气售价/(元·kg–1) | 20 | |||
制氢电价/(元·(kW | 0.42 | 当地发电价格 | ||
制氢水价/(元·t–1) | 3.05 | 当地工业水价 | ||
制氢初始效率/((kW | 4.5 | |||
电解槽制氢系统效率衰减/% | 10 | 假设平均衰减0.5%/年 | ||
政府补贴/(元·(kW | 0.25 | |||
电解槽制氢系统寿命/年 | 10 | |||
电解槽年等效利用小时数/h | 2 000 | |||
电压效率和氢气产生效率之间的 转换率/% | 5 | |||
氢气向水的转化率/% | 70 | |||
5 |
Table 3 Economic calculation parameters of hydrogen production system in electrolytic cell
项目 | 上限 | 备注 | ||
电解槽制氢投资成本/(元·kW–1) | 3 500 | |||
氢气售价/(元·kg–1) | 20 | |||
制氢电价/(元·(kW | 0.42 | 当地发电价格 | ||
制氢水价/(元·t–1) | 3.05 | 当地工业水价 | ||
制氢初始效率/((kW | 4.5 | |||
电解槽制氢系统效率衰减/% | 10 | 假设平均衰减0.5%/年 | ||
政府补贴/(元·(kW | 0.25 | |||
电解槽制氢系统寿命/年 | 10 | |||
电解槽年等效利用小时数/h | 2 000 | |||
电压效率和氢气产生效率之间的 转换率/% | 5 | |||
氢气向水的转化率/% | 70 | |||
5 |
节点名 | 功率传输分布因子 | 排名 | 节点名 | 功率传输分布因子 | 排名 | |||||
Bus-1 | –0.0 118 | 24 | Bus-16 | 0.1 532 | 5 | |||||
Bus-2 | –0.7 801 | 20 | Bus-17 | –0.2 791 | 16 | |||||
Bus-3 | –0.0 152 | 11 | Bus-18 | –0.0 565 | 13 | |||||
Bus-4 | –0.7 434 | 19 | Bus-19 | –0.0 159 | 27 | |||||
Bus-5 | –1.8 500 | 23 | Bus-20 | –0.0 125 | 25 | |||||
Bus-6 | 2.3 404 | 2 | Bus-21 | 0.0 706 | 8 | |||||
Bus-7 | –0.6 438 | 18 | Bus-22 | 0.0 099 | 7 | |||||
Bus-8 | 2.4 628 | 1 | Bus-23 | –0.0 224 | 29 | |||||
Bus-9 | –1.0 384 | 22 | Bus-24 | –0.1 175 | 14 | |||||
Bus-10 | 0.0 968 | 9 | Bus-25 | –0.0 186 | 28 | |||||
Bus-11 | 0.7 410 | 3 | Bus-26 | –0.1 873 | 15 | |||||
Bus-12 | –0.0 271 | 10 | Bus-27 | –0.0 232 | 12 | |||||
Bus-13 | –0.9 995 | 21 | Bus-28 | 0.0 370 | 6 | |||||
Bus-14 | –0.4 609 | 17 | Bus-29 | –0.0 139 | 26 | |||||
Bus-15 | 0.4 580 | 4 |
Table 4 Calculation results of power transmission distribution factor
节点名 | 功率传输分布因子 | 排名 | 节点名 | 功率传输分布因子 | 排名 | |||||
Bus-1 | –0.0 118 | 24 | Bus-16 | 0.1 532 | 5 | |||||
Bus-2 | –0.7 801 | 20 | Bus-17 | –0.2 791 | 16 | |||||
Bus-3 | –0.0 152 | 11 | Bus-18 | –0.0 565 | 13 | |||||
Bus-4 | –0.7 434 | 19 | Bus-19 | –0.0 159 | 27 | |||||
Bus-5 | –1.8 500 | 23 | Bus-20 | –0.0 125 | 25 | |||||
Bus-6 | 2.3 404 | 2 | Bus-21 | 0.0 706 | 8 | |||||
Bus-7 | –0.6 438 | 18 | Bus-22 | 0.0 099 | 7 | |||||
Bus-8 | 2.4 628 | 1 | Bus-23 | –0.0 224 | 29 | |||||
Bus-9 | –1.0 384 | 22 | Bus-24 | –0.1 175 | 14 | |||||
Bus-10 | 0.0 968 | 9 | Bus-25 | –0.0 186 | 28 | |||||
Bus-11 | 0.7 410 | 3 | Bus-26 | –0.1 873 | 15 | |||||
Bus-12 | –0.0 271 | 10 | Bus-27 | –0.0 232 | 12 | |||||
Bus-13 | –0.9 995 | 21 | Bus-28 | 0.0 370 | 6 | |||||
Bus-14 | –0.4 609 | 17 | Bus-29 | –0.0 139 | 26 | |||||
Bus-15 | 0.4 580 | 4 |
节点名 | 权重 | 排名 | ||
Bus-6 | 0.4 872 | 2 | ||
Bus-8 | 0.5 128 | 1 |
Table 5 Key node normalization
节点名 | 权重 | 排名 | ||
Bus-6 | 0.4 872 | 2 | ||
Bus-8 | 0.5 128 | 1 |
项目 | 规划结果 | 项目 | 规划结果 | |||
电解槽总容量/MW | Bus-6电解槽规划容量/MW | 584.64 | ||||
净现值/亿元 | Bus-8电解槽规划容量/MW | 615.36 | ||||
一次投资成本/亿元 | 151.889 | 电解槽布点位置 | Bus-6, Bus-8 |
Table 6 Capacity and layout planning results of hydrogen production system by electricity
项目 | 规划结果 | 项目 | 规划结果 | |||
电解槽总容量/MW | Bus-6电解槽规划容量/MW | 584.64 | ||||
净现值/亿元 | Bus-8电解槽规划容量/MW | 615.36 | ||||
一次投资成本/亿元 | 151.889 | 电解槽布点位置 | Bus-6, Bus-8 |
1 | 袁铁江, 蒋平, 孙谊媊, 等. 风储一体化电站容量双层优化规划研究[J]. 高电压技术, 2015, 41 (10): 3204- 3212. |
YUAN Tiejiang, JIANG Ping, SUN Yiqian, et al. Research on bi-level capacity programming optimization for the integration of wind farm energy storage power station[J]. High Voltage Engineering, 2015, 41 (10): 3204- 3212. | |
2 | 任大伟, 肖晋宇, 侯金鸣, 等. 计及多种灵活性约束和基于时序模拟的广域电力系统源-网-储协同规划方法[J]. 中国电力, 2022, 55 (1): 55- 63. |
REN Dawei, XIAO Jinyu, HOU Jinming, et al. Wide-area power system generation-transmission-storage coordinated planning method based on multiple flexibility constraints and time-series simulation[J]. Electric Power, 2022, 55 (1): 55- 63. | |
3 | 顾慧杰, 彭超逸, 孙书豪, 等. 风电-光伏-电制氢-抽蓄零碳电力系统短期生产模拟模型[J]. 上海交通大学学报, 2023, 57 (5): 505- 512. |
GU Huijie, PENG Chaoyi, SUN Shuhao, et al. A short-term production simulation model of wind-PV-hydrogen-pumped storage zero carbon power system[J]. Journal of Shanghai Jiao Tong University, 2023, 57 (5): 505- 512. | |
4 |
潘光胜, 顾钟凡, 罗恩博, 等. 新型电力系统背景下的电制氢技术分析与展望[J]. 电力系统自动化, 2023, 47 (10): 1- 13.
DOI |
PAN Guangsheng, GU Zhongfan, LUO Enbo, et al. Analysis and prospect of electrolytic hydrogen technology under background of new power systems[J]. Automation of Electric Power Systems, 2023, 47 (10): 1- 13.
DOI |
|
5 |
OLABI A G, BAHRI A S, ABDELGHAFAR A A, et al. Large-vscale hydrogen production and storage technologies: current status and future directions[J]. International Journal of Hydrogen Energy, 2021, 46 (45): 23498- 23528.
DOI |
6 | 宫娅宁, 苏舒, 林湘宁, 等. 独立光伏发电储能系统能量管理与经济调度研究[J]. 电力科学与技术学报, 2017, 32 (2): 3- 9, 30. |
GONG Yaning, SU Shu, LIN Xiangning, et al. Study on energy management and economic dispatch of stand-alone photovoltaic generation system with hybrid energy storage[J]. Journal of Electric Power Science and Technology, 2017, 32 (2): 3- 9, 30. | |
7 | 崔丽瑶, 刘怀东, 刘豪, 等. 基于氢能经济的电网大规模风电消纳模式[J]. 电力系统及其自动化学报, 2022, 34 (2): 108- 115. |
CUI Liyao, LIU Huaidong, LIU Hao, et al. Large-scale wind power accommodation mode of power grid based on hydrogen energy economy[J]. Proceedings of the CSU-EPSA, 2022, 34 (2): 108- 115. | |
8 |
李广, 樊艳芳. 基于自适应功率阈值的电网辅助光伏制氢控制策略及容量优化配置[J]. 可再生能源, 2022, 40 (9): 1215- 1222.
DOI |
LI Guang, FAN Yanfang. Grid-assisted photovoltaic hydrogen production control strategy and capacity optimization configuration based on adaptive power threshold[J]. Renewable Energy Resources, 2022, 40 (9): 1215- 1222.
DOI |
|
9 | 陈维荣, 傅王璇, 韩莹, 等. 计及需求侧的风-光-氢多能互补微电网优化配置[J]. 西南交通大学学报, 2021, 56 (3): 640- 649. |
CHEN Weirong, FU Wangxuan, HAN Ying, et al. Optimal configuration of wind-solar-hydrogen multi-energy complementary microgrid with demand side[J]. Journal of Southwest Jiaotong University, 2021, 56 (3): 640- 649. | |
10 |
HADIDIAN MOGHADDAM M J, KALAM A, NOWDEH S A, et al. Optimal sizing and energy management of stand-alone hybrid photovoltaic/wind system based on hydrogen storage considering LOEE and LOLE reliability indices using flower pollination algorithm[J]. Renewable Energy, 2019, 135, 1412- 1434.
DOI |
11 |
JAHANNOOSH M, NOWDEH S A, NADERIPOUR A, et al. New hybrid meta-heuristic algorithm for reliable and cost-effective designing of photovoltaic/wind/fuel cell energy system considering load interruption probability[J]. Journal of Cleaner Production, 2021, 278, 123406.
DOI |
12 |
YATES J, DAIYAN R, PATTERSON R, et al. Techno-economic analysis of hydrogen electrolysis from off-grid stand-alone photovoltaics incorporating uncertainty analysis[J]. Cell Reports Physical Science, 2020, 1 (10): 100209.
DOI |
13 |
MOKHTARA C, NEGROU B, SETTOU N, et al. Design optimization of grid-connected PV-hydrogen for energy prosumers considering sector-coupling paradigm: case study of a university building in Algeria[J]. International Journal of Hydrogen Energy, 2021, 46 (75): 37564- 37582.
DOI |
14 |
ZHANG Y S, HUA Q S, SUN L, et al. Life cycle optimization of renewable energy systems configuration with hybrid battery/hydrogen storage: a comparative study[J]. Journal of Energy Storage, 2020, 30, 101470.
DOI |
15 |
邓智宏, 江岳文. 考虑制氢效率特性的风氢系统容量优化[J]. 可再生能源, 2020, 38 (2): 259- 266.
DOI |
DENG Zhihong, JIANG Yuewen. Optimal sizing of a wind-hydrogen system under consideration of the efficiency characteristics of electrolysers[J]. Renewable Energy Resources, 2020, 38 (2): 259- 266.
DOI |
|
16 | 贾雨龙, 米增强, 刘力卿, 等. 分布式储能系统接入配电网的容量配置和有序布点综合优化方法[J]. 电力自动化设备, 2019, 39 (4): 1- 7, 16. |
JIA Yulong, MI Zengqiang, LIU Liqing, et al. Comprehensive optimization method of capacity configuration and ordered installation for distributed energy storage system accessing distribution network[J]. Electric Power Automation Equipment, 2019, 39 (4): 1- 7, 16. | |
17 |
URSUA A, GANDIA L M, SANCHIS P. Hydrogen production from water electrolysis: current status and future trends[J]. Proceedings of the IEEE, 2012, 100 (2): 410- 426.
DOI |
18 |
SÁNCHEZ M, AMORES E, RODRÍGUEZ L, et al. Semi-empirical model and experimental validation for the performance evaluation of a 15 kW alkaline water electrolyzer[J]. International Journal of Hydrogen Energy, 2018, 43 (45): 20332- 20345.
DOI |
19 |
URSÚA A, BARRIOS E L, PASCUAL J, et al. Integration of commercial alkaline water electrolysers with renewable energies: limitations and improvements[J]. International Journal of Hydrogen Energy, 2016, 41 (30): 12852- 12861.
DOI |
20 |
ZHANG C, WANG J Y, REN Z B, et al. Wind-powered 250 kW electrolyzer for dynamic hydrogen production: a pilot study[J]. International Journal of Hydrogen Energy, 2021, 46 (70): 34550- 34564.
DOI |
21 |
牛萌, 肖宇, 刘锋, 等. 可再生能源接入对氢储能系统的影响及控制策略[J]. 电力建设, 2018, 39 (4): 28- 34.
DOI |
NIU Meng, XIAO Yu, LIU Feng, et al. Influences of renewable energy on hydrogen storage system and its control strategy[J]. Electric Power Construction, 2018, 39 (4): 28- 34.
DOI |
|
22 |
PROOST J. State-of-the art CAPEX data for water electrolysers, and their impact on renewable hydrogen price settings[J]. International Journal of Hydrogen Energy, 2019, 44 (9): 4406- 4413.
DOI |
23 |
ZHANG H, YUAN T J. Optimization and economic evaluation of a PEM electrolysis system considering its degradation in variable-power operations[J]. Applied Energy, 2022, 324, 119760.
DOI |
24 |
LEE B, HEO J, CHOI N H, et al. Economic evaluation with uncertainty analysis using a Monte-Carlo simulation method for hydrogen production from high pressure PEM water electrolysis in Korea[J]. International Journal of Hydrogen Energy, 2017, 42 (39): 24612- 24619.
DOI |
25 |
李娟, 陈继军, 司双. 连续潮流与免疫遗传算法结合的静态电压稳定裕度计算[J]. 电力系统保护与控制, 2010, 38 (18): 24- 27, 32.
DOI |
LI Juan, CHEN Jijun, SI Shuang. Calculation of static voltage stability margin based on continuation power flow and immune genetic algorithm[J]. Power System Protection and Control, 2010, 38 (18): 24- 27, 32.
DOI |
|
26 | 李滨, 谢旭槟, 梁振成, 等. “双高”电力系统集中式储能选址定容规划策略[J]. 电力系统及其自动化学报, 2024, 36 (9): 31- 43. |
LI Bin, XIE Xubin, LIANG Zhencheng et al. Centralized energy storage site selection and capacity planning strategy for power system with high shares of renewables and power electronics[J]. Proceedings of the CSU-EPSA, 2024, 36 (9): 31- 43. | |
27 | 吴昊. 计及电网结构和状态的电网关键节点与关键线路的识别研究[D]. 南昌: 南昌大学, 2020. |
WU Hao. Research on the recognition of key nodes and lines in power grid considering power grid structure and state[D]. Nanchang: Nanchang University, 2020. |
[1] | ZHENG Jiajun, DUAN Xiaoyu, HU Zechun, HU Xiaorui, ZHU Bin. Modular Mobile Charging Facility Layout Optimization Method and Deployment Strategy [J]. Electric Power, 2025, 58(4): 107-118. |
[2] | Li FENG, Lianmei ZHANG, Jiajia WEI, Changhong DENG, Guo LI, Jiayue YIN. Development & Thinking of Offshore Wind Power Based on Life Cycle Economic Evaluation [J]. Electric Power, 2024, 57(9): 80-93. |
[3] | LU Zijing, LI Zishou, GUO Xiangguo, YANG Bo. Optimal Configuration of Electricity-Hydrogen Hybrid Energy Storage System Based on Multi-objective Artificial Hummingbird Algorithm [J]. Electric Power, 2023, 56(7): 33-42. |
[4] | XIU Xiaoqing, LI Xiangjun, WANG Jiarui, XIE Zhijia, LV Xiangyu. Generalized Cost Study of Energy Storage Power Station Based on Equivalent Efficiency Conversion [J]. Electric Power, 2022, 55(4): 192-202. |
[5] | ZHOU Lili, XIANG Yue, CHEN Lingtian. Research on Economic Allocation of User-Side Energy Storage Capacity Based on Risk-Benefit Analysis [J]. Electric Power, 2021, 54(9): 187-197. |
[6] | YAN Min, ZHANG Yang, GUO Bowen, ZHU Yue. Analysis on the Optimization of SCR Denitrification System Based on Life Cycle Cost [J]. Electric Power, 2021, 54(3): 191-196. |
[7] | YOU Lei, ZHANG Xueying, WANG Pengyu, LI Feng, LIN Dong, LIU Gang. Selection Method Between Copper and Aluminum Power Cable by Life Cycle Cost [J]. Electric Power, 2018, 51(4): 168-174. |
[8] | YAN Xiaoqing, TAN Xue. Peak Capacity Analysis for Coal Power Development in China [J]. Electric Power, 2018, 51(4): 75-80. |
[9] | CHEN Haihua. A Discussion on the Design of Amorphous Transformer for Wind Farm [J]. Electric Power, 2016, 49(4): 79-82. |
[10] | LIU Yang, SU Haoyi. Life Cycle Cost Estimation of Smart Substation Based on Blind Number Theory [J]. Electric Power, 2016, 49(3): 83-87. |
[11] | CHEN Yuan, WANG Lu, HUANG Youzhen, TANG Qinglan, XU Yuqin, HONG Qianli, ZHAO Beibei. Economic Benefit Evaluation Model of Distribution Network Planning Based on Multi-level Extension Evaluation Method [J]. Electric Power, 2016, 49(10): 159-164. |
[12] | YUE Zengwu, LI Xingeng, FAN Zhibin, GUO Kai. Research on Corrosion Protection Life-Cycle Cost of Transmission Steel Towers [J]. Electric Power, 2015, 48(2): 150-155. |
[13] | QIAO Guohua, GUO Luyao, Wu Yidi, LI Jing, JIA Zhaoyang, HAO Feng, ZHAN Xiangling, WANG Yayun. Substation Life Cycle Cost Prediction Model of the Least Squares Support Vector Machine Optimized by Genetic Algorithm [J]. journal1, 2015, 48(11): 142-148. |
[14] | XU Yu-qin, REN Zheng, ZHAN Xiang-ling, LI Tong, HU Wei-tao, QIAO Guo-hua, XIE Qing. Life Cycle Cost Risk Assessment of Power Transformer Based on Matter-Element Model [J]. Electric Power, 2014, 47(12): 127-132. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||