Electric Power ›› 2024, Vol. 57 ›› Issue (9): 94-102.DOI: 10.11930/j.issn.1004-9649.202401031
• Technical Economy, Planning and Operation, and Policy Mechanisms of Offshore Wind Power Hydrogen Production • Previous Articles Next Articles
Zhongqi LIU(), Yao LIU, Jinming HOU
Received:
2024-01-07
Accepted:
2024-04-06
Online:
2024-09-23
Published:
2024-09-28
Supported by:
Zhongqi LIU, Yao LIU, Jinming HOU. Economic Analysis of Energy Transmission for Energy Island Based on Deep-Sea Offshore Wind Farms[J]. Electric Power, 2024, 57(9): 94-102.
设备名称 | 参数 | 造价/ 亿元 | ||
海上换流变 (含升压变、阀体、直流断路器等) | 35 kV/220 kV, 容量180 MV·A的4组和容量240 MV·A的2组升压变 AC/DC:220 kV/±320 kV, | 9.95 | ||
直流海缆 | 100 km, | 10.30 | ||
150 km, | 15.45 | |||
200 km, | 20.60 | |||
陆上换流变 (含连接变、阀体、直流断路器等) | DC/AC:±320 kV/500 kV, | 8.80 |
Table 1 Parameters and cost of VSC-HVDC-based transmission scheme
设备名称 | 参数 | 造价/ 亿元 | ||
海上换流变 (含升压变、阀体、直流断路器等) | 35 kV/220 kV, 容量180 MV·A的4组和容量240 MV·A的2组升压变 AC/DC:220 kV/±320 kV, | 9.95 | ||
直流海缆 | 100 km, | 10.30 | ||
150 km, | 15.45 | |||
200 km, | 20.60 | |||
陆上换流变 (含连接变、阀体、直流断路器等) | DC/AC:±320 kV/500 kV, | 8.80 |
传输距离/km | 年送电量/(亿kW·h) | |||||
2023年 | 2030年 | 2050年 | ||||
100 | 38.808 | 38.808 | 43.659 | |||
150 | 38.674 | 38.674 | 43.508 | |||
200 | 38.540 | 38.540 | 43.358 |
Table 2 Onshore power supply per year based on VSC-HVDC
传输距离/km | 年送电量/(亿kW·h) | |||||
2023年 | 2030年 | 2050年 | ||||
100 | 38.808 | 38.808 | 43.659 | |||
150 | 38.674 | 38.674 | 43.508 | |||
200 | 38.540 | 38.540 | 43.358 |
项目 | 2023年 | 2030年 | 2050年 | |||
100 km输电成本 | 0.075 | 0.056 | 0.033 | |||
100 km到岸度电成本 | 0.715 | 0.336 | 0.173 | |||
150 km输电成本 | 0.089 | 0.067 | 0.040 | |||
150 km到岸度电成本 | 0.729 | 0.347 | 0.180 | |||
200 km输电成本 | 0.103 | 0.078 | 0.046 | |||
200 km到岸度电成本 | 0.743 | 0.358 | 0.186 |
Table 3 Cost of VSC-HVDC transmission scheme for energy island under rapid technological progress scenario 单位:元/(kW·h)
项目 | 2023年 | 2030年 | 2050年 | |||
100 km输电成本 | 0.075 | 0.056 | 0.033 | |||
100 km到岸度电成本 | 0.715 | 0.336 | 0.173 | |||
150 km输电成本 | 0.089 | 0.067 | 0.040 | |||
150 km到岸度电成本 | 0.729 | 0.347 | 0.180 | |||
200 km输电成本 | 0.103 | 0.078 | 0.046 | |||
200 km到岸度电成本 | 0.743 | 0.358 | 0.186 |
主要参数 | 2023年 | 2030年 | 2050年 | |||
AWE制氢效率/(kW·h·kg–1) | 57 | 55 | — | |||
PEMEC制氢效率/(kW·h·kg–1) | — | 50 | 45 | |||
AWE寿命/年 | 10 | 10 | 10 | |||
PEMEC寿命/年 | 10 | 10 | 10 | |||
AWE造价/(元·kW–1) | — | |||||
PEMEC造价/(元·kW–1) | — | |||||
电解槽综合造价/亿元 | 20 | 30 | 20 |
Table 4 Related parameters of hydrogen production by AWE considering technological progress
主要参数 | 2023年 | 2030年 | 2050年 | |||
AWE制氢效率/(kW·h·kg–1) | 57 | 55 | — | |||
PEMEC制氢效率/(kW·h·kg–1) | — | 50 | 45 | |||
AWE寿命/年 | 10 | 10 | 10 | |||
PEMEC寿命/年 | 10 | 10 | 10 | |||
AWE造价/(元·kW–1) | — | |||||
PEMEC造价/(元·kW–1) | — | |||||
电解槽综合造价/亿元 | 20 | 30 | 20 |
项目 | 成本 | |||||
2023年 | 2030年 | 2050年 | ||||
制氢+100 km管道 | 42.487 | 21.232 | 10.569 | |||
制氢+150 km管道 | 42.980 | 21.615 | 10.870 | |||
制氢+200 km管道 | 43.500 | 22.001 | 11.173 |
Table 5 Total cost of hydrogen production and delivery for different offshore transport distances 单位:元/kg
项目 | 成本 | |||||
2023年 | 2030年 | 2050年 | ||||
制氢+100 km管道 | 42.487 | 21.232 | 10.569 | |||
制氢+150 km管道 | 42.980 | 21.615 | 10.870 | |||
制氢+200 km管道 | 43.500 | 22.001 | 11.173 |
外送方案 | 成本 | |||||
2023年 | 2030年 | 2050年 | ||||
制氢+100 km管道 | 1.070 | 0.535 | 0.266 | |||
100 km柔性直流到岸 | 0.715 | 0.336 | 0.173 | |||
制氢+150 km管道 | 1.082 | 0.544 | 0.274 | |||
150 km柔性直流到岸 | 0.729 | 0.347 | 0.180 | |||
制氢+200 km管道 | 1.095 | 0.554 | 0.281 | |||
200 km柔性直流到岸 | 0.743 | 0.358 | 0.186 |
Table 6 Cost comparison of hydrogen transmission and power transmission schemes for different offshore transport distances 单位:元/(kW·h)
外送方案 | 成本 | |||||
2023年 | 2030年 | 2050年 | ||||
制氢+100 km管道 | 1.070 | 0.535 | 0.266 | |||
100 km柔性直流到岸 | 0.715 | 0.336 | 0.173 | |||
制氢+150 km管道 | 1.082 | 0.544 | 0.274 | |||
150 km柔性直流到岸 | 0.729 | 0.347 | 0.180 | |||
制氢+200 km管道 | 1.095 | 0.554 | 0.281 | |||
200 km柔性直流到岸 | 0.743 | 0.358 | 0.186 |
1 | 黄明煌, 王秀丽, 刘沈全, 等. 分频输电应用于深远海风电并网的技术经济性分析[J]. 电力系统自动化, 2019, 43 (5): 167- 174. |
HUANG Minghuang, WANG Xiuli, LIU Shenquan, et al. Technical and economic analysis on fractional frequency transmission system for integration of long-distance offshore wind farm[J]. Automation of Electric Power Systems, 2019, 43 (5): 167- 174. | |
2 | 全球能源互联网发展合作组织. 中国清洁能源基地化开发研究[M]. 北京: 中国电力出版社, 2023. |
3 | 李俊贤, 吴敏辉, 周于雷. 深远海风电运维技术与模式研究[J]. 水电与新能源, 2023, 37 (12): 43- 46. |
LI Junxian, WU Minhui, ZHOU Yulei. On the operation and maintenance technology and modes of far-shore wind power projects[J]. Hydropower and New Energy, 2023, 37 (12): 43- 46. | |
4 | 刘佳明. 大型海上风机的半潜式浮动基础结构设计与性能分析[D]. 哈尔滨: 哈尔滨工业大学, 2014. |
LIU Jiaming. Preliminary design and performance analysis of a semi-submersible floating foundation for large offshore wind trubine[D]. Harbin: Harbin Institute of Technology, 2014. | |
5 |
周原冰. 全球能源互联网及关键技术[J]. 科学通报, 2019, 64 (19): 1985- 1994.
DOI |
ZHOU Yuanbing. Global energy interconnection vision and key technologies[J]. Chinese Science Bulletin, 2019, 64 (19): 1985- 1994.
DOI |
|
6 |
PRYOR S C, BARTHELMIE R J. Wind shadows impact planning of large offshore wind farms[J]. Applied Energy, 2024, 359, 122755.
DOI |
7 | 陈金路, 张翔宇, 郑向远, 等. 海上风电智能运维关键技术与发展建议[J]. 海洋开发与管理, 2023, 40 (6): 117- 128. |
CHEN Jinlu, ZHANG Xiangyu, ZHENG Xiangyuan, et al. Key technologies and development suggestions for intelligent operation and maintenance of offshore wind power[J]. Ocean Development and Management, 2023, 40 (6): 117- 128. | |
8 | 贾科, 董学正, 李俊涛, 等. 一种适用于海上风电经MMC-MTDC并网的电网侧故障穿越方法[J]. 电力系统保护与控制, 2023, 51 (21): 76- 85. |
JIA Ke, DONG Xuezheng, LI Juntao, et al. A grid-side fault ride-through method suitable for offshore wind farms connected with MMC-MTDC[J]. Power System Protection and Control, 2023, 51 (21): 76- 85. | |
9 |
SHAO H, HENRIQUES R, MORAIS H, et al. Power quality monitoring in electric grid integrating offshore wind energy: a review[J]. Renewable and Sustainable Energy Reviews, 2024, 191, 114094.
DOI |
10 |
KALLINGER M D, RAPHA J I, TRUBAT CASAL P, et al. Offshore electrical grid layout optimization for floating wind—a review[J]. Clean Technologies, 2023, 5 (3): 791- 827.
DOI |
11 | 李海波. 深远海海上风电制氨场景及技术分析[J]. 低碳化学与化工, 2024, 49 (2): 115- 123. |
LI Haibo. Analysis of scenarios and technologies for offshore wind power ammonia production in deep-sea[J]. Low-Carbon Chemistry and Chemical Engineering, 2024, 49 (2): 115- 123. | |
12 |
李霄飞, 吴凤洁, 李鲁, 等. 海上风电产业发展判析[J]. 中国电力企业管理, 2023, (18): 14- 17.
DOI |
13 | 王婷, 茹小尚, 张立斌. 海上风电对海洋生态环境与海洋生物资源的综合影响研究进展[J]. 海洋科学, 2022, 46 (7): 95- 104. |
WANG Ting, RU Xiaoshang, ZHANG Libin. Research progress on the comprehensive impact of offshore wind farms on the marine ecological environment and biological resources[J]. Marine Sciences, 2022, 46 (7): 95- 104. | |
14 |
GIMPEL A, WERNER K M, BOCKELMANN F D, et al. Ecological effects of offshore wind farms on Atlantic cod (Gadus morhua) in the southern North Sea[J]. Science of the Total Environment, 2023, 878, 162902.
DOI |
15 | 胡剑. 海上风电项目对海洋生态环境的影响及防治措施[J]. 科技创新与应用, 2016, (34): 147. |
16 | 沈钦韩. 比利时将建世界首个人工“能源岛”[N]. 文汇报, 2023-11-04(004). |
17 |
宪凯. 海上风电制氢产业发展研究[J]. 中国资源综合利用, 2023, 41 (9): 166- 168.
DOI |
XIAN Kai. Research on the development of offshore wind power hydrogen production industry[J]. China Resources Comprehensive Utilization, 2023, 41 (9): 166- 168.
DOI |
|
18 | 孙腾, 龚语嫣, 冯翠翠, 等. 海上风牧融合的难题与挑战[J]. 海洋开发与管理, 2023, 40 (9): 19- 29. |
SUN Teng, GONG Yuyan, FENG Cuicui, et al. Difficulties and challenges of the integration of offshore wind farms and marine ranching[J]. Ocean Development and Management, 2023, 40 (9): 19- 29. | |
19 | 余立志. 深远海漂浮式风电项目施工技术论证与实践[M]. 北京: 人民交通出版社, 2023. |
20 | 秦海岩. 推动深远海风电开发, 助力沿海地区高质量发展[J]. 风能, 2024, (2): 1. |
21 | 王锡凡, 卫晓辉, 宁联辉, 等. 海上风电并网与输送方案比较[J]. 中国电机工程学报, 2014, 34 (31): 5459- 5466. |
WANG Xifan, WEI Xiaohui, NING Lianhui, et al. Integration techniques and transmission schemes for off-shore wind farms[J]. Proceedings of the CSEE, 2014, 34 (31): 5459- 5466. | |
22 | 徐政, 薛英林, 张哲任. 大容量架空线柔性直流输电关键技术及前景展望[J]. 中国电机工程学报, 2014, 34 (29): 5051- 5062. |
XU Zheng, XUE Yinglin, ZHANG Zheren. VSC-HVDC technology suitable for bulk power overhead line transmission[J]. Proceedings of the CSEE, 2014, 34 (29): 5051- 5062. | |
23 | 刘钟淇, 宋强, 刘文华. 基于模块化多电平变流器的轻型直流输电系统[J]. 电力系统自动化, 2010, 34 (2): 53- 58. |
LIU Zhongqi, SONG Qiang, LIU Wenhua. VSC-HVDC system based on modular multilevel converters[J]. Automation of Electric Power Systems, 2010, 34 (2): 53- 58. | |
24 | 饶宏, 周月宾, 李巍巍, 等. 柔性直流输电技术的工程应用和发展展望[J]. 电力系统自动化, 2023, 47 (1): 1- 11. |
RAO Hong, ZHOU Yuebin, LI Weiwei, et al. Engineering application and development prospect of VSC-HVDC transmission technology[J]. Automation of Electric Power Systems, 2023, 47 (1): 1- 11. | |
25 |
SULTAN Y A, KADDAH S S, ELADL A A. VSC-HVDC system-based on model predictive control integrated with offshore wind farms[J]. IET Renewable Power Generation, 2021, 15 (6): 1315- 1330.
DOI |
26 |
徐政. 海上风电送出主要方案及其关键技术问题[J]. 电力系统自动化, 2022, 46 (21): 1- 10.
DOI |
XU Zheng. Main schemes and key technical problems for grid integration of offshore wind farm[J]. Automation of Electric Power Systems, 2022, 46 (21): 1- 10.
DOI |
|
27 |
王锡凡, 刘沈全, 宋卓彦, 等. 分频海上风电系统的技术经济分析[J]. 电力系统自动化, 2015, 39 (3): 43- 50.
DOI |
WANG Xifan, LIU Shenquan, SONG Zhuoyan, et al. Technical and economical analysis on offshore wind power system integrated via fractional frequency transmission system[J]. Automation of Electric Power Systems, 2015, 39 (3): 43- 50.
DOI |
|
28 | 黄晓尧, 谢瑞, 裘鹏, 等. 远海风电两种送出方案的经济性评估[J]. 浙江电力, 2022, 41 (7): 1- 7. |
HUANG Xiaoyao, XIE Rui, QIU Peng, et al. Economic evaluation of two transmission methods for long-distance offshore wind power[J]. Zhejiang Electric Power, 2022, 41 (7): 1- 7. | |
29 | DNV. Floating offshore wind: the next five years[EB/OL]. (2022-01-01)[2023-12-01]. https://www.dnv.com/focus-areas/floating-offshore-wind/floating-offshore-wind-the-next-five-years/. |
30 | Frazer-Nash Consultancy. Review of technical assumptions and generation costs: floating offshore wind levelised cost of energy review[EB/OL]. (2023-01-01)[2023-11-30]. https://assets.publishing.service.gov.uk/media/655371f7019bd600149f1ffa/floating-offshore-wind-lcoe-report.pdf. |
31 | 全球能源互联网发展合作组织. 绿氢发展与展望[M]. 北京: 中国电力出版社, 2022. |
[1] | Bo ZHANG, Congbo WANG, Rongrong ZHAN, Yue YU. Adaptive Current Differential Protection Method Considering Control and Protection Coordination [J]. Electric Power, 2025, 58(2): 1-8. |
[2] | Yunlong WANG, Lu HAN, Shulin LUO, Tao WU. Load Scheduling Optimization of Home Electric Heating Integrated Energy System with Electric Vehicle [J]. Electric Power, 2024, 57(5): 39-49. |
[3] | Zimin ZHU, Jinfang ZHANG, Qing CHANG, Zhuan ZHOU, Xiaolin ZHANG. Adaptive VSG Control Strategy of Sending End for Large-Scale Renewable Energy Connected to Weakly-Synchronized Support VSC-HVDC System [J]. Electric Power, 2024, 57(5): 211-221. |
[4] | LI Huiling, WANG Xi, GAO Jian, SONG Yunting. Scheme Construction for Sending End DC Grids in Western China Under the Background of New Power System [J]. Electric Power, 2023, 56(5): 12-21. |
[5] | HUANG Weijie, JIANG Yuewen. Comparison of Economic Feasibilites Between Power Transmission and Hydrogen Production from an Offshore Wind Farm [J]. Electric Power, 2022, 55(1): 91-100. |
[6] | WU Jialing, LU Tiebing. Influence of the VSC-HVDC System Structure on the Overvoltage of Single-Pole Grounding Fault [J]. Electric Power, 2021, 54(10): 20-27. |
[7] | BAO Meng, SHEN Hong, LI Jialiang, SHI Yan, QI Lei, WANG Qian. Modeling and Prediction Analysis of Magnetic Field in DC Yard of VSC-HVDC Station under Short Circuit Condition [J]. Electric Power, 2021, 54(10): 55-62. |
[8] | FU Shouqiang, ZHANG Libin, LI Hongjian, CHEN Xiangyu, GAO Yang, CHEN Lei. Air Clearance Calculation and Compacting Layout Design of Valve Hall in Converter Station of VSC-HVDC Grid with High Voltage and Large Capacity [J]. Electric Power, 2021, 54(1): 10-18. |
[9] | LU Jianliang, HE Zhiyuan, TANG Rubin, DANG Qing, XIE Minhua, JI Ke, KOU Longze. Hardware-in-the-Loop Test Method for Valve Base Controller of VSC-HVDC [J]. Electric Power, 2021, 54(1): 62-69. |
[10] | FENG Jingbo, LV Zheng, DENG Weihua, HU Rong, WANG Xinying. Study on the IGBT Overcurrent Failure of VSC-HVDC Converter Valve [J]. Electric Power, 2021, 54(1): 70-77. |
[11] | LIU Weidong, LI Qinan, WANG Xuan, ZHANG Fan, LI Lanfang, YAN Hui. Application Status and Prospect of VSC-HVDC Technology for Large-Scale Offshore Wind Farms [J]. Electric Power, 2020, 53(7): 55-71. |
[12] | LYU Jie, YANG Weijia, HUANG Wei, PANG Hui, KONG Ming, YANG Yunxia, ZHANG Wenwen. Techno-economic of 66 kV AC Connection Solution for Offshore Wind Power [J]. Electric Power, 2020, 53(7): 72-79. |
[13] | WANG Du, LIU Yuxian, WAN Mingyuan, ZHAO Siwei, JIANG Jianming. Configuration and Operation Optimization of Circulating Water Pumps for 660 MW Ultra-supercritical Unit [J]. Electric Power, 2020, 53(2): 112-119. |
[14] | LI Pai, HUANG Yuehui, WANG Yuefeng, LI Shuiwang. Optimization of Wind and Solar Power Capacity Proportion Integrated in Multi-terminal VSC-HVDC System with a Pumped Storage Power Station [J]. Electric Power, 2019, 52(4): 32-40. |
[15] | LIANG Xiujin, ZHU Wentao, WEI Hongge, ZHU Yue. Technical Route Selection and Economic Analysis on Wet Plume Treatment for Coal-fired Units [J]. Electric Power, 2019, 52(3): 16-22. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||