Electric Power ›› 2025, Vol. 58 ›› Issue (12): 107-118.DOI: 10.11930/j.issn.1004-9649.202507056
• Key Technologies for Carbon Monitoring, Accounting, Carbon Footprint, and Carbon Management in New Power Systems • Previous Articles Next Articles
XU Sanmin1(
), ZHANG Gong1(
), ZHANG Yiwen2(
), LIU Yanzhen2(
), ZHANG Binliang2(
), TANG Jin2(
)
Received:2025-07-21
Revised:2025-11-07
Online:2025-12-27
Published:2025-12-28
Supported by:XU Sanmin, ZHANG Gong, ZHANG Yiwen, LIU Yanzhen, ZHANG Binliang, TANG Jin. Calculation and Analysis of the Electricity Carbon Footprint of Pumped Storage Power Stations in Power Systems[J]. Electric Power, 2025, 58(12): 107-118.
| 材料 | 消耗量 | 碳足迹因子[ | 碳排放量/t | |||
| 水泥 | 0.735 t/t | |||||
| 钢筋 | 2.34 t/t | |||||
| 钢材 | 2.05 t/t | |||||
| 粉煤灰 | 0.008 t/t | 234.40 | ||||
| 木材 | 0.143 t/m3 | |||||
| 炸药 | 1.471 t/t | |||||
| 柴油 | 0.637 t/t |
Table 1 Calculation of carbon emissions from main engineering materials
| 材料 | 消耗量 | 碳足迹因子[ | 碳排放量/t | |||
| 水泥 | 0.735 t/t | |||||
| 钢筋 | 2.34 t/t | |||||
| 钢材 | 2.05 t/t | |||||
| 粉煤灰 | 0.008 t/t | 234.40 | ||||
| 木材 | 0.143 t/m3 | |||||
| 炸药 | 1.471 t/t | |||||
| 柴油 | 0.637 t/t |
| 设备及物料 | 运输质量/t | 场内运输 距离/km | 场外运输 距离/km | 场内运输 耗油量/t | 场外运输 耗油量/t | 运输耗油量 合计/t | 柴油碳足迹 因子/(t·t–1) | 碳排放量/t | ||||||||
| 弃渣1号 | 0.01 | 0 | 0.73 | 0 | 0.73 | 3.777 | 2.77 | |||||||||
| 弃渣2号 | 0.50 | 13.38 | 0 | 13.38 | 50.53 | |||||||||||
| 弃渣3号 | 2.30 | 96.44 | 0 | 96.44 | 364.26 | |||||||||||
| 水泥 | 13.51 | 111 | 14.58 | 755.84 | 770.42 | |||||||||||
| 钢筋 | 111 | 2.74 | 142.12 | 144.87 | 547.16 | |||||||||||
| 钢材 | 111 | 3.06 | 158.27 | 161.33 | 609.35 | |||||||||||
| 粉煤灰 | 381 | 3.66 | 649.70 | 653.36 | ||||||||||||
| 木材 | 111 | 1.08 | 55.56 | 56.63 | 213.91 | |||||||||||
| 炸药 | 111 | 0.69 | 35.53 | 36.22 | 136.81 | |||||||||||
| 柴油 | 111 | 4.05 | 209.96 | 214.01 | 808.32 | |||||||||||
| 机电设备 | 111 | 1.02 | 52.89 | 53.91 | 203.62 | |||||||||||
| 金属结构设备 | 111 | 0.31 | 15.72 | 16.03 | 60.55 | |||||||||||
| 合计 | ||||||||||||||||
Table 2 Calculation of carbon emissions from the equipment and material transportation
| 设备及物料 | 运输质量/t | 场内运输 距离/km | 场外运输 距离/km | 场内运输 耗油量/t | 场外运输 耗油量/t | 运输耗油量 合计/t | 柴油碳足迹 因子/(t·t–1) | 碳排放量/t | ||||||||
| 弃渣1号 | 0.01 | 0 | 0.73 | 0 | 0.73 | 3.777 | 2.77 | |||||||||
| 弃渣2号 | 0.50 | 13.38 | 0 | 13.38 | 50.53 | |||||||||||
| 弃渣3号 | 2.30 | 96.44 | 0 | 96.44 | 364.26 | |||||||||||
| 水泥 | 13.51 | 111 | 14.58 | 755.84 | 770.42 | |||||||||||
| 钢筋 | 111 | 2.74 | 142.12 | 144.87 | 547.16 | |||||||||||
| 钢材 | 111 | 3.06 | 158.27 | 161.33 | 609.35 | |||||||||||
| 粉煤灰 | 381 | 3.66 | 649.70 | 653.36 | ||||||||||||
| 木材 | 111 | 1.08 | 55.56 | 56.63 | 213.91 | |||||||||||
| 炸药 | 111 | 0.69 | 35.53 | 36.22 | 136.81 | |||||||||||
| 柴油 | 111 | 4.05 | 209.96 | 214.01 | 808.32 | |||||||||||
| 机电设备 | 111 | 1.02 | 52.89 | 53.91 | 203.62 | |||||||||||
| 金属结构设备 | 111 | 0.31 | 15.72 | 16.03 | 60.55 | |||||||||||
| 合计 | ||||||||||||||||
| 能耗来源 | 消耗量 | 碳足迹因子[ | 碳排放量/t | |||
| 柴油 | 3.14 t/t | |||||
| 电力 | ||||||
| 合计 |
Table 3 Calculation of carbon emissions from energy consumption in construction stage
| 能耗来源 | 消耗量 | 碳足迹因子[ | 碳排放量/t | |||
| 柴油 | 3.14 t/t | |||||
| 电力 | ||||||
| 合计 |
| 不可溯源种类 | 不可溯源静态投资 (2007年价格)/万元 | 碳排放量/t | 占比/% | |||
| 机电设备获取 | 48.08 | |||||
| 金属结构获取 | 1.30 | |||||
| 机电设备安装 | 5.92 | |||||
| 金属结构安装 | 16.61 | |||||
| 库底清理 | 1.23 | |||||
| 导流工程 | 0.35 | |||||
| 环境保护和水 土保持工程 | 3.18 | |||||
| 其他建筑工程 不可溯源环节 | 23.33 | |||||
| 合计 | 100.00 |
Table 4 Calculation of non-traceable carbon emissions
| 不可溯源种类 | 不可溯源静态投资 (2007年价格)/万元 | 碳排放量/t | 占比/% | |||
| 机电设备获取 | 48.08 | |||||
| 金属结构获取 | 1.30 | |||||
| 机电设备安装 | 5.92 | |||||
| 金属结构安装 | 16.61 | |||||
| 库底清理 | 1.23 | |||||
| 导流工程 | 0.35 | |||||
| 环境保护和水 土保持工程 | 3.18 | |||||
| 其他建筑工程 不可溯源环节 | 23.33 | |||||
| 合计 | 100.00 |
| 阶段 | 排放类型 | 排放源 | 排放量/t | 占比/% | ||||
| 前期准备 | 碳不可溯源类 | 勘察设计 | 2.74 | |||||
| 征地移民 | 1.28 | |||||||
| 其他生产准备 | 3.54 | |||||||
| 施工建造 | 碳可溯源类 | 材料获取 | 12.51 | |||||
| 材料及设备运输(含弃渣运输) | 0.48 | |||||||
| 施工能耗 | 8.43 | |||||||
| 碳不可溯源类 | 机电设备获取 | 11.55 | ||||||
| 金属结构获取 | 0.31 | |||||||
| 机电设备安装 | 1.42 | |||||||
| 金属结构安装 | 3.99 | |||||||
| 库底清理 | 0.30 | |||||||
| 导流工程 | 0.08 | |||||||
| 环境保护和水土保持工程 | 0.76 | |||||||
| 其他建筑工程不可溯源环节 | 5.61 | |||||||
| 运营维护 | 温室气体通量 | 1.30 | ||||||
| 碳不可溯源类 | 日常运维 | 41.14 | ||||||
| 退役拆除 | 碳不可溯源类 | 退役拆除 | 4.55 | |||||
| 合计 | 100 | |||||||
Table 5 Lifecycle carbon emissions of Dunhua pumped storage power station
| 阶段 | 排放类型 | 排放源 | 排放量/t | 占比/% | ||||
| 前期准备 | 碳不可溯源类 | 勘察设计 | 2.74 | |||||
| 征地移民 | 1.28 | |||||||
| 其他生产准备 | 3.54 | |||||||
| 施工建造 | 碳可溯源类 | 材料获取 | 12.51 | |||||
| 材料及设备运输(含弃渣运输) | 0.48 | |||||||
| 施工能耗 | 8.43 | |||||||
| 碳不可溯源类 | 机电设备获取 | 11.55 | ||||||
| 金属结构获取 | 0.31 | |||||||
| 机电设备安装 | 1.42 | |||||||
| 金属结构安装 | 3.99 | |||||||
| 库底清理 | 0.30 | |||||||
| 导流工程 | 0.08 | |||||||
| 环境保护和水土保持工程 | 0.76 | |||||||
| 其他建筑工程不可溯源环节 | 5.61 | |||||||
| 运营维护 | 温室气体通量 | 1.30 | ||||||
| 碳不可溯源类 | 日常运维 | 41.14 | ||||||
| 退役拆除 | 碳不可溯源类 | 退役拆除 | 4.55 | |||||
| 合计 | 100 | |||||||
| 清单数据种类 | 敏感性/% | |
| 前期准备阶段碳不可溯源类 | 7.57 | |
| 施工建造可溯源类 | 23.56 | |
| 施工建造不可溯源类 | 26.43 | |
| 温室气体通量 | 1.30 | |
| 运营维护阶段碳不可溯源类 | 41.41 | |
| 退役阶段不可溯源类 | 4.55 |
Table 6 Sensitivity analysis of inventory data
| 清单数据种类 | 敏感性/% | |
| 前期准备阶段碳不可溯源类 | 7.57 | |
| 施工建造可溯源类 | 23.56 | |
| 施工建造不可溯源类 | 26.43 | |
| 温室气体通量 | 1.30 | |
| 运营维护阶段碳不可溯源类 | 41.41 | |
| 退役阶段不可溯源类 | 4.55 |
| 数据项 名称 | 数据 描述 | Ub | U1 | U2 | U3 | U4 | U5 | G | ||||||||
| 前期准备阶段碳不可溯源类 | 二氧化碳排放量 | 1.05 | 1.1 | 1.0 | 1.0 | 1.00 | 1 | |||||||||
| 施工建造阶段碳可溯源类 | 原料 | 1.05 | 1.1 | 1.0 | 1.0 | 1.00 | 1 | |||||||||
| 施工建造阶段碳不可溯源类 | 二氧化碳排放量 | 1.05 | 1.1 | 1.0 | 1.0 | 1.00 | 1 | |||||||||
| 温室气体通量 | 二氧化碳排放量 | 1.05 | 1.1 | 1.0 | 1.0 | 1.00 | 1 | |||||||||
| 运营维护阶段碳不可溯源类 | 二氧化碳排放量 | 1.05 | 1.1 | 1.0 | 1.0 | 1.00 | 1 | |||||||||
| 退役阶段 | 二氧化碳排放量 | 1.05 | 1.2 | 1.2 | 1.5 | 1.02 | 1 |
Table 7 Uncertainty evaluation results of inventory data
| 数据项 名称 | 数据 描述 | Ub | U1 | U2 | U3 | U4 | U5 | G | ||||||||
| 前期准备阶段碳不可溯源类 | 二氧化碳排放量 | 1.05 | 1.1 | 1.0 | 1.0 | 1.00 | 1 | |||||||||
| 施工建造阶段碳可溯源类 | 原料 | 1.05 | 1.1 | 1.0 | 1.0 | 1.00 | 1 | |||||||||
| 施工建造阶段碳不可溯源类 | 二氧化碳排放量 | 1.05 | 1.1 | 1.0 | 1.0 | 1.00 | 1 | |||||||||
| 温室气体通量 | 二氧化碳排放量 | 1.05 | 1.1 | 1.0 | 1.0 | 1.00 | 1 | |||||||||
| 运营维护阶段碳不可溯源类 | 二氧化碳排放量 | 1.05 | 1.1 | 1.0 | 1.0 | 1.00 | 1 | |||||||||
| 退役阶段 | 二氧化碳排放量 | 1.05 | 1.2 | 1.2 | 1.5 | 1.02 | 1 |
| 1 | 张智刚, 康重庆. 碳中和目标下构建新型电力系统的挑战与展望[J]. 中国电机工程学报, 2022, 42 (8): 2806- 2819. |
| ZHANG Zhigang, KANG Chongqing. Challenges and prospects for constructing the new-type power system towards a carbon neutrality future[J]. Proceedings of the CSEE, 2022, 42 (8): 2806- 2819. | |
| 2 | 但扬清, 王蕾, 郑伟民, 等. 高比例可再生能源接入背景下电网承载能力鲁棒提升策略[J]. 中国电力, 2023, 56 (9): 104- 111. |
| DAN Yangqing, WANG Lei, ZHENG Weimin, et al. Robust improvement strategy for power grid hosting capacity with integration of high proportion of renewable energy[J]. Electric Power, 2023, 56 (9): 104- 111. | |
| 3 | 国家发展改革委, 国家能源局. 关于加快推动新型储能发展的指导意见[J]. 电力设备管理, 2021 (7): 16- 17,40. |
| 4 | 国家发展改革委. 关于进一步完善抽水蓄能价格形成机制的意见: 发改价格〔2021〕633号[A/OL]. (2021-4-30) [2025-5-30]. http://www.gov.cn/zhengce/zhengceku/2021-05/08/content_5605367.htm. |
| 5 | 中国政府网. 《抽水蓄能中长期发展规划(2021—2035)》印发实施[A/OL]. (2021-09-09)[2025-04-10]. http://www.gov.cn/xinwen/202109/09/content_5636487.html. |
| 6 | 北京市生态环境局, 北京市统计局. 关于公布纳入北京市碳排放权交易管理的2024年度碳排放单位名单的通知[A/OL]. (2024-08-06) [2025-05-30]. https://sthjj.beijing.gov.cn/bjhrb/index/xxgk69/zfxxgk43/fdzdgknr2/325924085/543475291/index.html. |
| 7 | GILES J. Methane quashes green credentials of hydropower[J]. Nature, 2006, 444 (7119): 524- 525. |
| 8 | QIU J. Chinese dam may be a methane menace[J]. Nature, 2009. DOI: 10.1038/news.2009.962. |
| 9 | 中国环境报. 中国电力碳足迹因子客观反映了电力低碳转型成效| 系列解读一[R/OL]. https://chinapower.org.cn/index.php/detail/441205.html. |
| 10 | 生态环境部, 国家统计局, 国家能源局. 关于发布2023年电力碳足迹因子数据的公告: 公告2025年第3号[A/OL]. (2025-01-21)[2025-08-06]. https://www.mee.gov.cn/xxgk2018/xxgk/xxgk01/202501/t20250123_1101226.html. |
| 11 | 杜海龙, 李哲, 郭劲松. 基于ISO14067的长江上游某水电项目碳足迹分析[J]. 长江流域资源与环境, 2017, 26 (7): 1102- 1110. |
| DU Hailong, LI Zhe, GUO Jinsong. Carbon footprint of a large hydropower project in the upstream of the yangtze: following ISO14067[J]. Resources and Environment in the Yangtze Basin, 2017, 26 (7): 1102- 1110. | |
| 12 | 杜海龙. 金沙江大型水电站碳足迹的生命周期分析研究[D]. 重庆: 中国科学院大学(中国科学院重庆绿色智能技术研究院), 2017. |
| DU Hailong. Carbon footprint of typical hydro-projects in Jinsha River[D]. Chongqing: Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, 2017. | |
| 13 | 宋国辉, 唐璐, 姜武, 等. 2×200 MW级某天然气热电联产项目的生命周期环境影响评价[J]. 中国电力, 2014, 47 (12): 149- 155. |
| SONG Guohui, TANG Lu, JIANG Wu, et al. Life-cycle environmental impact assessment of a typical 2×200 MW natural gas combined cycle-combined heat and power plant[J]. Electric Power, 2014, 47 (12): 149- 155. | |
| 14 | 刘含笑, 单思珂, 魏书洲, 等. 基于生命周期法的煤电碳足迹评估[J]. 中国电力, 2024, 57 (7): 227- 237. |
| LIU Hanxiao, SHAN Sike, WEI Shuzhou, et al. Life-cycle carbon footprint assessment of coal-fired power generation[J]. Electric Power, 2024, 57 (7): 227- 237. | |
| 15 | 王怀斌. 光伏发电全生命周期碳足迹及减排潜力研究[J]. 中国能源, 2023, 45 (8): 34- 44. |
| WANG Huaibin. Life cycle carbon footprint and carbon emission reduction potential of photovoltaic power generation[J]. Energy of China, 2023, 45 (8): 34- 44. | |
| 16 | 李新航. 基于全生命周期的风电系统碳排放核算与分析[J]. 环境保护与循环经济, 2021, 41 (6): 5- 8, 45. |
| 17 | 王兵, 姜鑫茹, 陆峰, 等. 全生命周期视角下煤基燃气发电碳足迹及成本评估[J/OL]. 煤炭学报, 1–17 [2025-05-26]. https://doi.org/10.13225/j.cnki.jccs.2024.1592. |
| WANG Bing, JIANG Xinru, LU Feng, et al. Carbon footprint and cost assessment of coal-based gas power generation from the perspective of full life cycle[J/OL]. Journal of China Coal Society, 1–17 [2025-05-26]. https://doi.org/10.13225/j.cnki.jccs.2024.1592. | |
| 18 |
侯公羽, 马骁赟, 杨振华, 等. 抽水蓄能电站全生命周期碳排放计算与分析[J]. 中国环境科学, 2023, 43 (S1): 326- 335.
|
|
HOU Gongyu, MA Xiaoyun, YANG Zhenhua, et al. Calculation and analysis of carbon emissions in the whole life cycle of pumped storage power stations[J]. China Environmental Science, 2023, 43 (S1): 326- 335.
|
|
| 19 |
PASCALE A, URMEE T, MOORE A. Life cycle assessment of a community hydroelectric power system in rural Thailand[J]. Renewable Energy, 2011, 36 (11): 2799- 2808.
|
| 20 |
RIBEIRO F D, DA SILVA G A. Life-cycle inventory for hydroelectric generation: a Brazilian case study[J]. Journal of Cleaner Production, 2010, 18 (1): 44- 54.
|
| 21 |
SUWANIT W, GHEEWALA S H. Life cycle assessment of mini-hydropower plants in Thailand[J]. International Journal of Life Cycle Assessment, 2011, 16 (9): 849- 858.
|
| 22 | 李雨晨, 秦宇, 杨柳, 等. 长江上游大中型水库碳排放量估算与分析: 以IPCC国家温室气体清单指南为基础[J]. 湖泊科学, 2023, 35 (1): 131- 145. |
| LI Yuchen, QIN Yu, YANG Liu, et al. Estimation and analysis of carbon emissions from the large-and medium-sized reservoirs in the upper reaches of Changjiang River: on the basis of the IPCC national greenhouse gas inventory[J]. Journal of Lake Sciences, 2023, 35 (1): 131- 145. | |
| 23 | 李哲, 王殿常. 从水库温室气体研究到水电碳足迹评价: 方法及进展[J]. 水利学报, 2022, 53 (02): 139- 153. |
| LI Zhe, WANG Dianchang. From reservoir greenhouse gas emissions to hydropower carbon footprint: methodology and advances[J]. Journal of Hydraulic Engineering, 2022, 53 (02): 139- 153. | |
| 24 | WRI, WBCSD. GHG protocol: product life cycle accounting and reporting standard [S]. Washington: WRI, 2011. |
| 25 | 张益兵, 朱朝勇, 武美辰, 等. 基于全生命周期评价的变压器碳足迹研究与分析[J]. 高压电器, 2024, 60 (11): 57- 67. |
| ZHANG Yibing, ZHU Chaoyong, WU Meichen, et al. Research and analysis of carbon footprint of transformer based on full life cycle assessment[J]. High Voltage Apparatus, 2024, 60 (11): 57- 67. | |
| 26 | 中华人民共和国住房和城乡建设部. 建筑碳排放计算标准: GB/T 51366—2019[S]. 北京: 中国建筑工业出版社, 2019. |
| 27 | 张孝存. 建筑碳排放量化分析计算与低碳建筑结构评价方法研究[D]. 哈尔滨: 哈尔滨工业大学, 2018. |
| ZHANG Xiaocun. Research on the quantitative analysis of building carbon emissions andassessment methods for low-carbon buildings and structures [D]. Harbin: Harbin Institute of Technology, 2018. | |
| 28 | 申娟娟. 基于LCA的建筑碳足迹测算及减排对策研究[D]. 广州: 广东工业大学, 2019. |
| SHEN Juanjuan. Research on carbon footprint calculation and emission reduction measures of buildings basedon life-cycle assessment[D]. Guangzhou: Gangdong University of Technology, 2019. | |
| 29 | 生态环境部. 企业温室气体排放核算与报告指南 发电设施 [S]. 北京: 中国环境科学出版社, 2022. |
| 30 | World Resources Institute, C40 Cities Climate Leadership Group, ICLEI-Local Governments for Sustainability. Global protocol for community-scale greenhouse gas emission inventories [S]. 2014. |
| 31 | Carbon footprint of products-requirements and guidelines for quantification and communication: ISO 14067—2013 [S]. |
| 32 | 国家市场监督管理总局, 中国国家标准化管理委员会. 温室气体 产品碳足迹 量化要求和指南: GB/T 24067—2024[S]. |
| 33 | 黄阮明, 费斐, 李灏恩, 等. 基于全生命周期法的储能技术减排降碳效益评估[J]. 电力与能源, 2024, 45 (1): 71- 76. |
| HUANG Ruanming, FEI fei, LI Hao'en, et al. Evaluation of carbon reduction benefit of energy storage technology based on the whole life cycle method[J]. Power & Energy, 2024, 45 (1): 71- 76. | |
| 34 | SIMON T R, INMAN D, HANES R, et al. Life cycle assessment of closed-loop pumped storage hydropower in the United States[J]. Environmental Science & Technology, 2023, 57 (33): 12251- 12258. |
| 35 | 童荣鑫, 梁迅, 关庆锋, 等. 2000—2020年中国陆地土壤碳储量及土地管理碳汇核算[J]. 地理学报, 2023, 78 (9): 2209- 2222. |
| TONG Rongxin, LIANG Xun, GUAN Qingfeng, et al. Estimation of soil carbon storage change from land use and management at a high spatial resolution in China during 2000-2020[J]. Acta Geographica Sinica, 2023, 78 (9): 2209- 2222. | |
| 36 | 李小军, 辛晓洲, 彭志晴. 2003—2012年中国地表太阳辐射时空变化及其影响因子[J]. 太阳能学报, 2017, 38 (11): 3057- 3066. |
| LI Xiaojun, XIN Xiaozhou, PENG Zhiqing. Change analysis of surface solar radiation in china from 2003 to 2012[J]. Acta Energiae Solaris Sinica, 2017, 38 (11): 3057- 3066. | |
| 37 | HERTWICH E G, GIBON T, BOUMAN E A, et al. Integrated life-cycle assessment of electricity-supply scenarios confirms global environmental benefit of low-carbon technologies[J]. Proceedings of the National Academy of Sciences, 2014, 112(20). DOI:10.1073/pnas.1312753111. |
| 38 | 李朋, 白孝轩, 丁宁, 等. 水电碳足迹关键影响因素及区域化研究趋势[J]. 中国环境科学, 2025, 45 (4): 2251- 2263. |
| LI Peng, BAI Xiaoxuan, DING Ning, et al. Key factors influencing hydropower carbon footprint assessment and geo-regional research trends[J]. China Environmental Science, 2025, 45 (4): 2251- 2263. | |
| 39 | IPCC. Climate change 2014: mitigation of climate change [R]. United Kingdom and New York, NY, USA: Cambridge University Press, 2014. |
| 40 | UBIERNA M, SANTOS C. D, MERCIER-BLAIS S. Water security and climate change: hydropower reservoir greenhouse gas emissions, in water security under climate change[R]. Singapore: Springer Singapore, 2022: 69–94. |
| 41 |
张斌, 李哲, 李翀, 等. 水库温室气体净通量评估模型(G-res Tool)及在长江上游典型水库初步应用[J]. 湖泊科学, 2019, 31 (5): 1479- 1488.
|
|
ZHANG Bin, LI Zhe, LI Chong, et al. The net GHG flux assessment model of reservoir (G-res Tool) and its application in reservoirs in upper reaches of Yangtze River in China[J]. Journal of Lake Sciences, 2019, 31 (5): 1479- 1488.
|
|
| 42 | 国家能源局. 2024年度中国电力市场发展报告[R/OL]. (2025-07-15)[2025-08-13]. https://www.nea.gov.cn/20250717/54ae0fdb11f04b39a5b670999c04ef81/c.html. |
| 43 | 水电水利规划设计总院. 中国可再生能源发展报告: 2024年度[R/OL]. (2025-05-28) [2025-08-13]. http://www.creei.cn/web/content.html?id=7282. |
| [1] | FU Chengcheng, ZHANG Chunyan, LIU Jianye, JIA Dexiang, LI Dan, WANG Su. Optimal Dispatching Method of Demand-Side Resources with Load Aggregator Participation [J]. Electric Power, 2025, 58(8): 1-11. |
| [2] | ZHANG Hangong, XIE Lirong, WANG Cengceng, REN Juan, BIAN Yifan, HAN Xianchao. Low-Carbon and Flexible Scheduling of Integrated Energy Systems Considering Multi-utilization of Hydrogen Energy [J]. Electric Power, 2025, 58(7): 38-53. |
| [3] | WEI Chunhui, SHAN Linsen, HU Dadong, GAO Qianheng, ZHANG Xinsong, XUE Xiaocen. Optimal Scheduling Strategy of Park-level Virtual Power Plant for Demand Response [J]. Electric Power, 2025, 58(6): 112-121. |
| [4] | WANG Yanyang, LI Jianzhao, LIU Jingqing, TANG Cheng, WANG Jiantao, LU Jinling, REN Hui. Comprehensive Cost Analysis of Multiple Entities under the Coupling Mechanism of Electricity and Carbon [J]. Electric Power, 2025, 58(6): 180-189. |
| [5] | HU Changsheng, BAI Zhijun, ZHANG Zhang, LI Jiankang, SHEN Ziyang. Research on Capacity and Distribution Planning of Electric Hydrogen Production Considering Static Voltage Stability Margin [J]. Electric Power, 2025, 58(5): 91-101. |
| [6] | XU Shijie, HU Bangjie, ZHAO Liang, WANG Pei. Research on Optimal Dispatch with Source-Load Coordination for Micro-energy Grid Based on Energy-Carbon Coupling Model [J]. Electric Power, 2025, 58(4): 1-12. |
| [7] | ZHAO Tong, LI Xuesong, ZHOU Hao, DING Yu, YANG Bin, WANG Wentao, WANG Peng. Electricity Carbon Coupled Market Modeling Method and Market Optimization Mechanism Based on Dynamic Carbon Emission Intensity [J]. Electric Power, 2025, 58(4): 31-43. |
| [8] | ZHOU Feihang, WANG Hao, WANG Haili, WANG Meng, JIN Yaojie, LI Zhongchun, ZHANG Zhongde, WANG Peng. Multi-entity Behaviors in Electricity-Carbon-Green Certificate Coupled Markets Based on Multi-agent Reinforcement Learning [J]. Electric Power, 2025, 58(4): 44-55. |
| [9] | LI Keyun, ZHANG Ning, ZHAO Le, ZHAO Cheng, LI Jiayu, TANG Cheng. Carbon Emission Accounting Methods for Key Electric Equipment and Materials in Power Transmission and Transformation Projects [J]. Electric Power, 2025, 58(4): 193-204. |
| [10] | ZHANG Feng, JIANG Jishuang, LI Chao, XIA Zhixiang, DAI Li, WANG Kaige, FANG Mengxiang, LUO Zhongyang. Quantitative Analysis of Carbon Emission from Power Transmission and Transformation Projects Based on GHGP Standard System [J]. Electric Power, 2025, 58(4): 205-215. |
| [11] | Xianghai XU, Jiayi SHANG, Tianyu ZHAO, Yingfei GONG, Weibin HE, Yachen TANG. Optimization of Energy Storage Profit Considering Carbon Emission Constraints and Market Participation [J]. Electric Power, 2025, 58(3): 204-212. |
| [12] | YU Wanshui, YI Jun, YANG Wenli, MIAO Bo, ZHANG Haotian, CHEN Wenjing, BAO Jixiu, JIN Xianglong. User-Side Dynamic Carbon Responsibility Accounting Method Considering Marginal Carbon Emissions and Demand Response [J]. Electric Power, 2025, 58(12): 86-95. |
| [13] | ZHANG Shining, HOU Fangxin, WEN Ya, LIU Yifang, YANG Fang. Drivers of the Electricity Carbon Emission Factor: An LMDI-based Analysis and International Comparison [J]. Electric Power, 2025, 58(12): 96-106. |
| [14] | DENG Xiangyan, DONG Xinzhao, DING Xu, WU Zhuhui, HAI Bao, BAI Zhenming, YAO Zheng, QIAN Zihao, LI Jianxi. Carbon Reduction Potential Assessment of Recycling Retired NCM Batteries from a Life Cycle Perspective [J]. Electric Power, 2025, 58(12): 190-198. |
| [15] | QUAN Peiying, JIN Yanming, XU Shenzhi. Accounting Methods for Indirect Carbon Emissions from Cross-regional Electricity under Dual Carbon Control Policies [J]. Electric Power, 2025, 58(10): 63-70. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
