Electric Power ›› 2025, Vol. 58 ›› Issue (12): 190-198.DOI: 10.11930/j.issn.1004-9649.202410041
• New Energy and Energy Storage • Previous Articles Next Articles
DENG Xiangyan1(
), DONG Xinzhao1, DING Xu1, WU Zhuhui1, HAI Bao1, BAI Zhenming1, YAO Zheng1, QIAN Zihao2, LI Jianxi2(
)
Received:2024-10-14
Revised:2025-11-13
Online:2025-12-27
Published:2025-12-28
Supported by:DENG Xiangyan, DONG Xinzhao, DING Xu, WU Zhuhui, HAI Bao, BAI Zhenming, YAO Zheng, QIAN Zihao, LI Jianxi. Carbon Reduction Potential Assessment of Recycling Retired NCM Batteries from a Life Cycle Perspective[J]. Electric Power, 2025, 58(12): 190-198.
Fig.4 Sankey diagram of the carbon footprint impact contribution in cyclic utilization of retired ternary lithum batteries (50% cascade utilization, 50% hydrometallurgical recycling)
| 1 | 张元星, 刁晓虹, 李涛永, 等. 全球车网互动标准进展研究及相关建议[J]. 电力信息与通信技术, 2023, 21 (2): 13- 24. |
| ZHANG Yuanxing, DIAO Xiaohong, LI Yongtao, et al. Research on the Progress of Global Vehicle to Grid Standards and Relevant Suggestions[J]. Electric Power Information and Communication Technology, 2023, 21 (2): 13- 24. | |
| 2 |
KAMRAN M, RAUGEI M, HUTCHINSON A. A dynamic material flow analysis of lithium-ion battery metals for electric vehicles and grid storage in the UK: Assessing the impact of shared mobility and end-of-life strategies[J]. Resources, Conservation and Recycling, 2021, 167, 105412.
|
| 3 | 姜晓锋, 魏巍, 王永灿, 等. “车—路—网”协同优化下的电动汽车有序充电引导策略[J]. 电力科学与技术学报, 2023, 38 (5): 44- 56. |
| JIANG Xiaofeng, WEI Wei, WANG Yongcan, et al. Orderly charging guidance strategies for electric vehicles underEVs-Traffic-Distribution collaborative optimization[J]. Journal of Electric Power Science and Technology, 2023, 38 (5): 44- 56. | |
| 4 | 文爱军, 姜雨滋, 孟洪民, 等. 基于负荷跟踪和客户低感知的电动汽车群调个控充电管理方法[J]. 电力信息与通信技术, 2024, 22 (3): 43- 51. |
| WEN Aijun, JIANG Yuzi, MENG Hongmin, et al. Group-tuning and individual-control charging management method for electric vehicles based on load tracking and low customer perception[J]. Electric Power Information and Communication Technology, 2024, 22 (3): 43- 51. | |
| 5 | 王文, 史华泽, 岳雨霏, 等. 基于改进初值带遗忘因子的递推最小二乘法的锂电池参数辨识[J]. 电力科学与技术学报, 2024, 39 (4): 178- 186. |
| WANG Wen, SHI Huaze, YUE Yufei, et al. Parameters identification of lithium battery based on forgetting factor recursiveleast square algorithm with improved initial value[J]. Journal of Electric Power Science and Technology, 2024, 39 (4): 178- 186. | |
| 6 | 范智伟, 乔丹, 崔海港. 锂离子电池充放电倍率对容量衰减影响研究[J]. 电源技术, 2020, 44 (3): 325- 329. |
| FAN Zhiwei, QIAO Dan, CUI Haigang. Influence of charge and discharge rate on capacity fade of lithium ion battery[J]. Chinese Journal of Power Sources, 2020, 44 (3): 325- 329. | |
| 7 |
ALI RAJAEIFAR M, GHADIMI P, RAUGEI M, et al. Challenges and recent developments in supply and value chains of electric vehicle batteries: a sustainability perspective[J]. Resources, Conservation and Recycling, 2022, 180, 106144.
|
| 8 |
RICHA K, BABBITT C W, NENADIC N G, et al. Environmental trade-offs across cascading lithium-ion battery life cycles[J]. The International Journal of Life Cycle Assessment, 2017, 22 (1): 66- 81.
|
| 9 |
YANG J, GU F, GUO J F. Environmental feasibility of secondary use of electric vehicle lithium-ion batteries in communication base stations[J]. Resources, Conservation and Recycling, 2020, 156, 104713.
|
| 10 | CICCONI P, LANDI D, MORBIDONI A, et al. Feasibility analysis of second life applications for Li-Ion cells used in electric powertrain using environmental indicators[C]//2012 IEEE International Energy Conference and Exhibition (ENERGYCON). Florence, Italy. IEEE, 2012: 985–990. |
| 11 |
CASALS L C, GARCÍA B A, AGUESSE F, et al. Second life of electric vehicle batteries: relation between materials degradation and environmental impact[J]. The International Journal of Life Cycle Assessment, 2017, 22 (1): 82- 93.
|
| 12 | RYAN N A, LIN Y S, MITCHELL-WARD N, et al. Use-phase drives lithium-ion battery life cycle environmental impacts when used for frequency regulation[J]. Environmental Science & Technology, 2018, 52 (17): 10163- 10174. |
| 13 |
GUO W, FENG T, LI W, et al. Comparative life cycle assessment of sodium-ion and lithium iron phosphate batteries in the context of carbon neutrality[J]. Journal of Energy Storage, 2023, 72, 108589.
|
| 14 |
LAI X, CHEN Q W, TANG X P, et al. Critical review of life cycle assessment of lithium-ion batteries for electric vehicles: a lifespan perspective[J]. eTransportation, 2022, 12, 100169.
|
| 15 | 刘含笑, 单思珂, 魏书洲, 等. 基于生命周期法的煤电碳足迹评估[J]. 中国电力, 2024, 57 (7): 227- 237. |
| LIU Hanxiao, SHAN Sike, WEI Shuzhou, et al. Life-cycle carbon footprint assessment of coal-fired power generation[J]. Electric Power, 2024, 57 (7): 227- 237. | |
| 16 |
LYNCH J, CAIN M, PIERREHUMBERT R, et al. Demonstrating GWP*: a means of reporting warming-equivalent emissions that captures the contrasting impacts of short- and long-lived climate pollutants[J]. Environmental Research Letters, 2020, 15 (4): 044023.
|
| 17 | DAI Q, KELLY J C, DUNN J, et al. Update of bill-of-materials and cathode materials production for lithium-ion batteries in the GREET® model[R]. Lemont, IL, USA: Argonne National Laboratory, 2018. |
| 18 |
XI Y K, LIU Y, ZHANG D K, et al. Comparative study of the electrochemical performance of LiNi0.5Co0.2Mn0.3O2 and LiNi0.8Co0.1Mn0.1O2 cathode materials for lithium ion batteries[J]. Solid State Ionics, 2018, 327, 27- 31.
|
| 19 | 夏向阳, 谭欣欣, 单周平, 等. 储能电站锂离子电池本体安全关键技术及新技术应用情况[J]. 中国电力, 2024, 57 (11): 1- 17. |
| XIA Xiangyang, TAN Xinxin, SHAN Zhouping, et al. Key technology and development prospect of ontology safety for lithium-ion battery storage power stations[J]. Electric Power, 2024, 57 (11): 1- 17. | |
| 20 | 朱国才, 何向明. 废旧锂离子动力电池的拆解及梯次利用[J]. 新材料产业, 2017 (9): 43- 46. |
| 21 |
WANG S Y, YU J, OKUBO K. Life cycle assessment on the reuse and recycling of the nickel-metal hydride battery: Fleet-based study on hybrid vehicle batteries from Japan[J]. Journal of Industrial Ecology, 2021, 25 (5): 1236- 1249.
|
| 22 | WANG S Y, YU J. A comparative life cycle assessment on lithium-ion battery: Case study on electric vehicle battery in China considering battery evolution[J]. Waste Management & Research, 2021, 39 (1): 156- 164. |
| 23 |
IOAKIMIDIS C S, MURILLO-MARRODÁN A, BAGHERI A, et al. Life cycle assessment of a lithium iron phosphate (LFP) electric vehicle battery in second life application scenarios[J]. Sustainability, 2019, 11 (9): 2527.
|
| 24 | 丁鹏飞, 孙坚, 徐红伟. 三元锂电池温度-放电倍率耦合加速寿命模型研究[J]. 计量学报, 2022, 43 (2): 250- 255. |
| DING Pengfei, SUN Jian, XU Hongwei. Study on temperature-discharge rate coupling accelerated life model of ternary lithium battery[J]. Acta Metrologica Sinica, 2022, 43 (2): 250- 255. | |
| 25 | 李学哲, 李孝平, 冯海美, 等. 动力锂电池剩余寿命评价方法及系统的研究[J]. 电源技术, 2017, 41 (4): 551- 554. |
| LI Xuezhe, LI Xiaoping, FENG Haimei, et al. Study on method and system of power lithium battery residual life evaluation[J]. Chinese Journal of Power Sources, 2017, 41 (4): 551- 554. | |
| 26 | 丁鹏飞, 孙坚, 徐红伟. 三元锂电池加速循环寿命模型的量化研究[J]. 电源技术, 2021, 45 (9): 1133- 1135, 1139. |
| DING Pengfei, SUN Jian, XU Hongwei. Quantitative study on accelerated cycle life model of ternary lithium battery[J]. Chinese Journal of Power Sources, 2021, 45 (9): 1133- 1135, 1139. | |
| 27 |
QUAN J W, ZHAO S Q, SONG D M, et al. Comparative life cycle assessment of LFP and NCM batteries including the secondary use and different recycling technologies[J]. Science of the Total Environment, 2022, 819, 153105.
|
| 28 |
SUN X, LUO X L, ZHANG Z, et al. Life cycle assessment of lithium nickel cobalt manganese oxide (NCM) batteries for electric passenger vehicles[J]. Journal of Cleaner Production, 2020, 273, 123006.
|
| 29 |
TAO Y, WANG Z P, WU B L, et al. Environmental life cycle assessment of recycling technologies for ternary lithium-ion batteries[J]. Journal of Cleaner Production, 2023, 389, 136008.
|
| 30 | 蔡博峰, 赵良, 张哲, 等. 中国区域电网二氧化碳排放因子研究(2023)[R], 2023. |
| 31 |
CHEN Q W, HOU Y K, LAI X, et al. Evaluating environmental impacts of different hydrometallurgical recycling technologies of the retired nickel-manganese-cobalt batteries from electric vehicles in China[J]. Separation and Purification Technology, 2023, 311, 123277.
|
| [1] | XU Sanmin, ZHANG Gong, ZHANG Yiwen, LIU Yanzhen, ZHANG Binliang, TANG Jin. Calculation and Analysis of the Electricity Carbon Footprint of Pumped Storage Power Stations in Power Systems [J]. Electric Power, 2025, 58(12): 107-118. |
| [2] | Hanxiao LIU, Sike SHAN, Shuzhou WEI, Liyuan YU, Shuai WANG, Meiling LIU, Ying CUI. Life-Cycle Carbon Footprint Assessment of Coal-fired Power Generation [J]. Electric Power, 2024, 57(7): 227-237. |
| [3] | Na ZHANG, Lin ZHAO, Wenying SHANG, Xing JI, Jia LI, Yuhui HUANG. Whole Process Carbon Footprint Traceability of Dalian City Based on STIRPAT Model [J]. Electric Power, 2024, 57(1): 133-139. |
| [4] | MAO Jin, LI Yajuan, LIU Yapeng, WANG Jing, PU Ping, GUO Weizhong, HE Gaoxiang. The Study of Membrane Fouling in MBR [J]. Electric Power, 2016, 49(1): 44-48. |
| [5] | ZHAO Xiao-li, WANG Shun-hao. Economic Evaluation of Wind Power Generation Based on Benefits of Carbon Dioxide Emission Reduction [J]. Electric Power, 2014, 47(8): 154-160. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
