Electric Power ›› 2025, Vol. 58 ›› Issue (12): 86-95.DOI: 10.11930/j.issn.1004-9649.202507009
• Key Technologies for Carbon Monitoring, Accounting, Carbon Footprint, and Carbon Management in New Power Systems • Previous Articles Next Articles
YU Wanshui1(
), YI Jun1, YANG Wenli2, MIAO Bo1(
), ZHANG Haotian1, CHEN Wenjing1, BAO Jixiu2, JIN Xianglong2
Received:2025-07-03
Revised:2025-09-17
Online:2025-12-27
Published:2025-12-28
Supported by:YU Wanshui, YI Jun, YANG Wenli, MIAO Bo, ZHANG Haotian, CHEN Wenjing, BAO Jixiu, JIN Xianglong. User-Side Dynamic Carbon Responsibility Accounting Method Considering Marginal Carbon Emissions and Demand Response[J]. Electric Power, 2025, 58(12): 86-95.
| 机组 | 机组类型 | 边际成本一次项/ (美元·MW–1) | 边际成本常 数项/美元 | |||
| G1 | 光伏 | 0 | 16.000 | |||
| G2 | 风电 | 0 | 18.000 | |||
| G3 | 煤电 | 17 | 0.017 | |||
| G4 | 气电 | 29 | 0.027 | |||
| G5 | 煤电 | 19 | 0.016 |
Table 1 Unit cost parameters
| 机组 | 机组类型 | 边际成本一次项/ (美元·MW–1) | 边际成本常 数项/美元 | |||
| G1 | 光伏 | 0 | 16.000 | |||
| G2 | 风电 | 0 | 18.000 | |||
| G3 | 煤电 | 17 | 0.017 | |||
| G4 | 气电 | 29 | 0.027 | |||
| G5 | 煤电 | 19 | 0.016 |
| 机组 | ||||||
| G1 | 0 | 300 | 0 | |||
| G2 | 0 | 400 | 0 | |||
| G3 | 108 | 550 | 0.986 | |||
| G4 | 38 | 250 | 0.542 | |||
| G5 | 123 | 600 | 0.986 |
Table 2 Performance parameters of the unit
| 机组 | ||||||
| G1 | 0 | 300 | 0 | |||
| G2 | 0 | 400 | 0 | |||
| G3 | 108 | 550 | 0.986 | |||
| G4 | 38 | 250 | 0.542 | |||
| G5 | 123 | 600 | 0.986 |
| 1 | 单葆国, 刘青, 张莉莉, 等. 新形势下“十四五”后三年中国电力需求形势研判[J]. 中国电力, 2023, 56 (3): 1- 11. |
| SHAN Baoguo, LIU Qing, ZHANG Lili, et al. Analysis of China's power demand situation in the last three years of the "14th Five-Year Plan" under the new situation[J]. Electric Power, 2023, 56 (3): 1- 11. | |
| 2 | 徐潇源, 王晗, 严正, 等. 能源转型背景下电力系统不确定性及应对方法综述[J]. 电力系统自动化, 2021, 45 (16): 2- 13. |
| XU Xiaoyuan, WANG Han, YAN Zheng, et al. Overview of power system uncertainty and its solutions under energy transition[J]. Automation of Electric Power Systems, 2021, 45 (16): 2- 13. | |
| 3 | 黎博, 陈民铀, 钟海旺, 等. 高比例可再生能源新型电力系统长期规划综述[J]. 中国电机工程学报, 2023, 43 (2): 555- 581. |
| LI Bo, CHEN Minyou, ZHONG Haiwang, et al. A review of long-term planning of new power systems with large share of renewable energy[J]. Proceedings of the CSEE, 2023, 43 (2): 555- 581. | |
| 4 |
PALMINTIER B S, WEBSTER M D. Impact of operational flexibility on electricity generation planning with renewable and carbon targets[J]. IEEE Transactions on Sustainable Energy, 2016, 7 (2): 672- 684.
|
| 5 |
ZHUO Z Y, DU E S, ZHANG N, et al. Cost increase in the electricity supply to achieve carbon neutrality in China[J]. Nature Communications, 2022, 13, 3172.
|
| 6 | 赵伟, 熊正勇, 潘艳, 等. 计及碳排放流的电力系统低碳规划[J]. 电力系统自动化, 2023, 47 (9): 23- 33. |
| ZHAO Wei, XIONG Zhengyong, PAN Yan, et al. Low-carbon planning of power system considering carbon emission flow[J]. Automation of Electric Power Systems, 2023, 47 (9): 23- 33. | |
| 7 | TAN B, MA X, WU J F, et al. Planning of new distribution network considering green power certificate trading and carbon emissions trading[C]//2021 6th International Conference on Power and Renewable Energy (ICPRE). Shanghai, China. IEEE, 2021: 700–706. |
| 8 | 张沈习, 王丹阳, 程浩忠, 等. 双碳目标下低碳综合能源系统规划关键技术及挑战[J]. 电力系统自动化, 2022, 46 (8): 189- 207. |
| ZHANG Shenxi, WANG Danyang, CHENG Haozhong, et al. Key technologies and challenges of low-carbon integrated energy system planning for carbon emission peak and carbon neutrality[J]. Automation of Electric Power Systems, 2022, 46 (8): 189- 207. | |
| 9 | 金晨, 任大伟, 肖晋宇, 等. 支撑碳中和目标的电力系统源-网-储灵活性资源优化规划[J]. 中国电力, 2021, 54 (8): 164- 174. |
| JIN Chen, REN Dawei, XIAO Jinyu, et al. Optimization planning on power system supply-grid-storage flexibility resource for supporting the "carbon neutrality" target of China[J]. Electric Power, 2021, 54 (8): 164- 174. | |
| 10 | 边晓燕, 吴珊, 赵健, 等. 考虑源荷碳责任分摊的新型电力系统多级灵活性资源规划[J]. 电力自动化设备, 2024, 44 (2): 155- 164. |
| BIAN Xiaoyan, WU Shan, ZHAO Jian, et al. Multi-level flexible resource planning of new power system considering source-load carbon responsibility allocation[J]. Electric Power Automation Equipment, 2024, 44 (2): 155- 164. | |
| 11 | 严新荣, 王静, 郑文广, 等. 发电企业低碳转型路径优化方法及应用[J]. 上海交通大学学报, 2025, 59 (10): 1487- 1497. |
| YAN Xinrong, WANG Jing, ZHENG Wenguang, et al. Optimization methods and application for low-carbon transition pathways of power generation enterprises[J]. Journal of Shanghai Jiao Tong University, 2025, 59 (10): 1487- 1497. | |
| 12 | 周天睿, 康重庆, 徐乾耀, 等. 电力系统碳排放流的计算方法初探[J]. 电力系统自动化, 2012, 36 (11): 44- 49. |
| ZHOU Tianrui, KANG Chongqing, XU Qianyao, et al. Preliminary investigation on a method for carbon emission flow calculation of power system[J]. Automation of Electric Power Systems, 2012, 36 (11): 44- 49. | |
| 13 | 康重庆, 程耀华, 孙彦龙, 等. 电力系统碳排放流的递推算法[J]. 电力系统自动化, 2017, 41 (18): 10- 16. |
| KANG Chongqing, CHENG Yaohua, SUN Yanlong, et al. Recursive calculation method of carbon emission flow in power systems[J]. Automation of Electric Power Systems, 2017, 41 (18): 10- 16. | |
| 14 | 刘座铭, 李成钢, 刘海洋, 等. 面向需求响应的电力系统源网负荷碳责任分摊方法研究[J]. 煤炭经济研究, 2024, 44 (9): 109- 116. |
| LIU Zuoming, LI Chenggang, LIU Haiyang, et al. Research onload carbon responsibility allocation method of power system based on demand response[J]. Coal Economic Research, 2024, 44 (9): 109- 116. | |
| 15 | 李姚旺, 张宁, 杜尔顺, 等. 基于碳排放流的电力系统低碳需求响应机制研究及效益分析[J]. 中国电机工程学报, 2022, 42 (8): 2830- 2842. |
| LI Yaowang, ZHANG Ning, DU Ershun, et al. Mechanism study and benefit analysis on power system low carbon demand response based on carbon emission flow[J]. Proceedings of the CSEE, 2022, 42 (8): 2830- 2842. | |
| 16 | 别佩, 林少华, 王宁, 等. 基于电力潮流追踪与绿色电力交易的企业用电侧碳排放因子核算[J]. 南方电网技术, 2023, 17 (6): 34- 43. |
| BIE Pei, LIN Shaohua, WANG Ning, et al. Calculation of carbon emission factors on the corporate electricity consumption side based on power flow tracing and green power trading[J]. Southern Power System Technology, 2023, 17 (6): 34- 43. | |
| 17 | 张笑演, 王橹裕, 黄蕾, 等. 考虑扩展碳排放流和碳交易议价模型的园区综合能源优化调度[J]. 电力系统自动化, 2023, 47 (9): 34- 46. |
| ZHANG Xiaoyan, WANG Luyu, HUANG Lei, et al. Optimal dispatching of park-level integrated energy system considering augmented carbon emission flow and carbon trading bargain model[J]. Automation of Electric Power Systems, 2023, 47 (9): 34- 46. | |
| 18 | 李汶龙, 周云, 罗祾, 等. 计及现货交易的电能量交易全环节用电碳责任分摊[J]. 中国电力, 2024, 57 (5): 99- 112. |
| LI Wenlong, ZHOU Yun, LUO Ling, et al. Carbon allocation throughout the entire process of electric energy trading considering spot trading[J]. Electric Power, 2024, 57 (5): 99- 112. | |
| 19 | 李薇, 许轶, 许野, 等. 基于FCI-公平性的电力系统负荷侧碳排放责任分摊研究[J]. 华南师范大学学报(自然科学版), 2023, 55 (2): 10- 17. |
| LI Wei, XU Yi, XU Ye, et al. Research on load-side carbon emission obligation allocation of power system based on FCI-fairness method[J]. Journal of South China Normal University (Natural Science Edition), 2023, 55 (2): 10- 17. | |
| 20 | 陈丽霞, 孙弢, 周云, 等. 电力系统发电侧和负荷侧共同碳责任分摊方法[J]. 电力系统自动化, 2018, 42 (19): 106- 111. |
| CHEN Lixia, SUN Tao, ZHOU Yun, et al. Method of carbon obligation allocation between generation side and demand side in power system[J]. Automation of Electric Power Systems, 2018, 42 (19): 106- 111. | |
| 21 | 黄彦璐, 胡旭东, 林振福, 等. 考虑峰荷特性的电力系统负荷侧碳排放责任核算方法[J]. 电力建设, 2025, 46 (2): 88- 98. |
| HUANG Yanlu, HU Xudong, LIN Zhenfu, et al. Accounting method for carbon emission obligation on load side of power system based on peak load characteristics[J]. Electric Power Construction, 2025, 46 (2): 88- 98. | |
| 22 | 杨维, 张宁, 康重庆. 基于电力市场合约的企业电力碳排放核算研究[J]. 电网技术, 2024, 48 (10): 4115- 4125. |
| YANG Wei, ZHANG Ning, KANG Chongqing. Research on accounting for enterprise electricity carbon emissions based on electricity market contracts[J]. Power System Technology, 2024, 48 (10): 4115- 4125. | |
| 23 |
WANG Y Q, QIU J, TAO Y C, et al. Carbon-oriented operational planning in coupled electricity and emission trading markets[J]. IEEE Transactions on Power Systems, 2020, 35 (4): 3145- 3157.
|
| 24 | 陈芷萌, 雷舒娅, 魏仁杰, 等. 面向双碳目标的“位置公平”用户侧碳责任分摊方法研究[J]. 电网技术, 2024, 48 (9): 3544- 3553. |
| CHEN Zhimeng, LEI Shuya, WEI Renjie, et al. Research on "location-fair" approach for user-side carbon responsibility allocation in the context of dual carbon goals[J]. Power System Technology, 2024, 48 (9): 3544- 3553. | |
| 25 | 陈政, 何耿生, 尚楠. 面向碳达峰碳中和的电网碳排放因子改进计算方法[J]. 南方电网技术, 2024, 18 (1): 153- 162. |
| CHEN Zheng, HE Gengsheng, SHANG Nan. Improved calculation method of power grid carbon emission factor for carbon peak and carbon neutrality goals[J]. Southern Power System Technology, 2024, 18 (1): 153- 162. | |
| 26 | 关哲, 杨晨, 冯皓然, 等. 考虑边际碳排放因子不确定性的低碳需求响应技术[J/OL]. 南方电网技术, 2024: 1–11. (2024-12-16). https://kns.cnki.net/kcms/detail/44.1643.tk.20241216.1022.002.html. |
| GUAN Zhe, YANG Chen, FENG Haoran, et al. Low-carbon demand response technology considering the uncertainty of the marginal carbon emission factor[J/OL]. Southern Power System Technology, 2024: 1–11. (2024-12-16). https://kns.cnki.net/kcms/detail/44.1643.tk.20241216.1022.002.html. | |
| 27 |
魏夕凯 , 谭效时 , 阮嘉桐 , 等. 2005—2021 年区域和省级电网碳排放因子研究[J]. 气候变化研究进展, 2024, 20 (3): 337- 350.
|
|
WEI Xikai, TAN Xiaoshi, RUAN Jiatong, et al. Research on carbon emission factors of regional and provincial power grids from 2005 to 2021[J]. Climate Change Research, 2024, 20 (3): 337- 350.
|
|
| 28 |
何耿生, 曾金灿, 朱浩骏, 等. 电网平均碳排放因子统计核算方法综述[J]. 环境影响评价, 2024, 46 (4): 64- 70.
|
|
HE Gengsheng, ZENG Jincan, ZHU Haojun, et al. Summary of statistical accounting methods for average carbon emission factors of power grid[J]. Environmental Impact Assessment, 2024, 46 (4): 64- 70.
|
|
| 29 | 曾金灿, 王成围, 杨晨, 等. 基于广义节点碳流理论的区域电网用电碳排放计算方法[J]. 广东电力, 2023, 36 (11): 20- 28. |
| ZENG Jincan, WANG Chengwei, YANG Chen, et al. Measurement method of area electricity carbon emission based on generalized nodal carbon emission flow[J]. Guangdong Electric Power, 2023, 36 (11): 20- 28. | |
| 30 | 杨威, 龚学良, 曾智健, 等. 碳排放交易市场机制对电力市场的影响: 基于碳价需求响应的电力市场用户行为分析[J]. 南方电网技术, 2022, 16 (8): 59- 67. |
| YANG Wei, GONG Xueliang, ZENG Zhijian, et al. Impacts of ETS mechanism on electricity market: behavior analysis of market customers based on carbon-oriented demand response[J]. Southern Power System Technology, 2022, 16 (8): 59- 67. |
| [1] | WANG Shiqian, HAN Ding, WANG Nan, BAI Hongkun, SONG Dawei, HU Caihong. Cooperative Scheduling of Active Distribution Network Based on Two Layer Master Slave Game [J]. Electric Power, 2025, 58(9): 105-114. |
| [2] | GAO Fangjie, SUN Yujie, LI Yi, LE Ying, ZHANG Jiguang, XU Chuanbo, LIU Dunnan. Robust Optimization Scheduling of Island Multi-energy Microgrid Considering Offshore Wind Power to Hydrogen [J]. Electric Power, 2025, 58(7): 68-79. |
| [3] | ZHANG Bohang, QI Jun, XIE Luyao, ZHANG Youbing, ZHANG Boyang. Distributed Model Predictive Frequency Control of Interconnected Power Systems Considering Demand Response [J]. Electric Power, 2025, 58(7): 105-114. |
| [4] | ZHANG Jie, HUA Yufei, WANG Chen. A Demand Side Adjustment Capacity Sharing Model Based on Cooperative Game [J]. Electric Power, 2025, 58(6): 45-55. |
| [5] | WEI Chunhui, SHAN Linsen, HU Dadong, GAO Qianheng, ZHANG Xinsong, XUE Xiaocen. Optimal Scheduling Strategy of Park-level Virtual Power Plant for Demand Response [J]. Electric Power, 2025, 58(6): 112-121. |
| [6] | XU Shijie, HU Bangjie, ZHAO Liang, WANG Pei. Research on Optimal Dispatch with Source-Load Coordination for Micro-energy Grid Based on Energy-Carbon Coupling Model [J]. Electric Power, 2025, 58(4): 1-12. |
| [7] | XIANG Shilin, XIANG Yue, WANG Yanliang, LU Yu. Optimization Strategy for Spatiotemporal Cooperative Operation of Multiple Data Centers Considering Load Response Characteristics [J]. Electric Power, 2025, 58(4): 170-181. |
| [8] | Wenjun XU, Gang MA, Yunting YAO, Yuxiang MENG, Weikang LI. Multi-energy Optimal Scheduling of Industrial Parks Considering Green Certificate - Carbon Trading Mechanism and Hydrogen Compressed Natural Gas [J]. Electric Power, 2025, 58(2): 154-163. |
| [9] | PAN Tingzhe, JIN Fengyuan, LU Yonghao, CAO Wangzhang, YANG Hao, YU Heyang, ZHAO Boyang. Design of Dynamic Pricing Strategy for Electric Vehicles Charging in Smart Communities [J]. Electric Power, 2025, 58(11): 14-24, 37. |
| [10] | WEN Sihai, XIAN Yuesheng, HAN Yang, LIU Qunying, CHEN Shuheng. A Stackelberg Game-based Optimization Strategy for Integrated Energy Systems Incorporating Wind-solar Power Scenario Generation [J]. Electric Power, 2025, 58(11): 72-87. |
| [11] | TAN Qinliang, ZENG Jiabin, LV Hanyu, HE Jiaming, SHI Chaofan, DING Yihong. Optimization of Distribution-side Distributed Photovoltaic Market Trading Strategies Considering Source-Grid-Load-Storage Coordination [J]. Electric Power, 2025, 58(10): 39-49. |
| [12] | YANG Xiong, LI Juan, JIANG Yunlong, LI Hongmei, XU Wanyun, LI Xiaolu, GUO Ruipeng. An Optimal Scheduling Method for Demand-Side Resource Clustering in Distribution Networks Based on Customer Directrix Load Reconfiguration [J]. Electric Power, 2025, 58(10): 163-170. |
| [13] | Lingling TAN, Wei TANG, Dongqing CHU, Jingrui LI, Yumin ZHANG, Xingquan JI. Optimal Dispatching of Electric-Heat-Hydrogen Integrated Energy System Based on Stackelberg Game [J]. Electric Power, 2024, 57(9): 136-145. |
| [14] | Fengliang XU, Keqian WANG, Wenhao WANG, Peng WANG, Wenye WANG, Shuai ZHANG, Fengzhan ZHAO. Optimal Allocation of Hybrid Energy Storage in Low-Voltage Distribution Networks with Incentive-based Demand Response [J]. Electric Power, 2024, 57(6): 90-101. |
| [15] | Cailing ZHANG, Shuang WANG, Shuna GE, Deng PAN, Yan ZHANG, Wei HAN, Wenyan DUAN. Optimal Scheduling of Integrated Energy Systems Considering Flexible Demand Response and Carbon Emission-Green Certificate Joint Trading [J]. Electric Power, 2024, 57(5): 14-25. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
