Electric Power ›› 2025, Vol. 58 ›› Issue (7): 38-53.DOI: 10.11930/j.issn.1004-9649.202411086
• Planning and Operation Technology of Large-Scale Integrated Energy Systems • Previous Articles Next Articles
					
													ZHANG Hangong1(
), XIE Lirong1(
), WANG Cengceng2, REN Juan3, BIAN Yifan1, HAN Xianchao1
												  
						
						
						
					
				
Received:2024-11-25
															
							
															
							
															
							
																	Online:2025-07-30
															
							
							
																	Published:2025-07-28
															
							
						Supported by:ZHANG Hangong, XIE Lirong, WANG Cengceng, REN Juan, BIAN Yifan, HAN Xianchao. Low-Carbon and Flexible Scheduling of Integrated Energy Systems Considering Multi-utilization of Hydrogen Energy[J]. Electric Power, 2025, 58(7): 38-53.
| 时段 | 价格/(元·(kW·h)–1) | |
| 01:00—08:00; 23:00—24:00 | 0.38 | |
| 08:00—12:00; 15:00—19:00 | 0.68 | |
| 12:00—15:00;19:00—23:00 | 1.20 | 
Table 1 Time-of-use purchased electricity price
| 时段 | 价格/(元·(kW·h)–1) | |
| 01:00—08:00; 23:00—24:00 | 0.38 | |
| 08:00—12:00; 15:00—19:00 | 0.68 | |
| 12:00—15:00;19:00—23:00 | 1.20 | 
| 参数 | 数值 | 参数 | 数值 | |||
| 典型场景数目 | 10 | 电热转换系数/ (MJ·(MW⋅h)–1)  | ||||
| 氢气低位热值/(MJ·m–3) | 11 | 天然气价格/(万元·m–3) | ||||
| 天然气低位热值/(MJ·m–3) | 39 | CO2气体密度/(t·m–3) | ||||
| 碳交易基准价格/(万元·t–1) | 0.014 | 弃风惩罚成本系数/ (万元·MW–1)  | 0.013 | |||
| 碳交易价格增长率/% | 30 | 弃光惩罚成本系数/ (万元·MW–1)  | 0.05 | |||
| 碳排放区间/t | 200 | 购气上限/MW | 500 | |||
| 燃煤机组供电基准/ (t·(MW⋅h)–1)  | 购电上限/MW | 500 | ||||
| 燃气机组供电基准/ (t·(MW⋅h)–1)  | 售电功率上限/MW | 50 | ||||
| 燃气机组供热基准/ (t·(MW⋅h)–1)  | 
Table 2 IES-related parameter
| 参数 | 数值 | 参数 | 数值 | |||
| 典型场景数目 | 10 | 电热转换系数/ (MJ·(MW⋅h)–1)  | ||||
| 氢气低位热值/(MJ·m–3) | 11 | 天然气价格/(万元·m–3) | ||||
| 天然气低位热值/(MJ·m–3) | 39 | CO2气体密度/(t·m–3) | ||||
| 碳交易基准价格/(万元·t–1) | 0.014 | 弃风惩罚成本系数/ (万元·MW–1)  | 0.013 | |||
| 碳交易价格增长率/% | 30 | 弃光惩罚成本系数/ (万元·MW–1)  | 0.05 | |||
| 碳排放区间/t | 200 | 购气上限/MW | 500 | |||
| 燃煤机组供电基准/ (t·(MW⋅h)–1)  | 购电上限/MW | 500 | ||||
| 燃气机组供电基准/ (t·(MW⋅h)–1)  | 售电功率上限/MW | 50 | ||||
| 燃气机组供热基准/ (t·(MW⋅h)–1)  | 
| 设备 | 参数 | 数值 | 设备 | 参数 | 数值 | |||||
| 储液式碳捕集电厂 | CCPP基础能耗/MW | 3 | 甲烷反应器 | 转换效率/% | 70 | |||||
| CCPP运行能耗系数/((MW⋅h)·t–1) | 0.268 | MR氢功率上、下限/MW | 150、0 | |||||||
| 再生效率、吸收效率/% | 90、90 | MR爬坡上、下限/(MW⋅h–1) | 50、–50 | |||||||
| 富液罐CO2浓度/% | 92.95 | 掺氢热电联产机组 | 掺氢比上、下限/% | 20、10 | ||||||
| 富液罐储液上、下限/m3 | 转换效率/% | 92 | ||||||||
| 贫液罐储液上、下限/m3 | 可调电热比上、下限 | 2.08、0.48 | ||||||||
| 富液罐/贫液罐初始容量/m3 | CHP混合燃气功率上、下限/MW | 210、0 | ||||||||
| 燃煤机组单位发电量的碳排放强度/(t·(MW⋅h)–1) | 1.02 | CHP爬坡上、下限/(MW⋅h–1) | ±45 | |||||||
| 燃煤机组出力上、下限/MW | 400、100 | 耗天然气型碳排放系数a1、b1、c1 | 3、–0.004、0.001 | |||||||
| 燃煤机组爬坡上、下限/(MW⋅h–1) | 125、–125 | 掺氢燃气锅炉 | 掺氢比上、下限/% | 20、2 | ||||||
| 单位发电量燃煤成本/(万元·(MW⋅h)–1) | 0.042 | 转换效率/% | 80 | |||||||
| 燃煤机组的碳排放系数a2、b2、c2 | 36、–0.38、 | GB混合燃气功率上、下限/MW | 120、0 | |||||||
| 碳封存成本/(万元·t–1) | 0.004 | GB爬坡上、下限/(MW⋅h–1) | 40、–40 | |||||||
| 电解槽 | 转换效率/% | 75 | 有机朗肯循环系统 | 转换效率/% | 80 | |||||
| EL电功率上、下限/MW | 200、0 | ORC输入功率上、下限/MW | 100、0 | |||||||
| EL爬坡上、下限/(MW⋅h–1) | 40、–40 | ORC爬坡上、下限/(MW⋅h–1) | 50、–50 | |||||||
| 储氢罐 | 储氢、释氢效率/% | 均95 | 储热罐 | 储热、放热效率/% | 均85 | |||||
| 储氢罐容量上、下限/(MW⋅h) | 储热罐容量上、下限/(MW⋅h) | 200、30 | ||||||||
| 储氢罐初始容量/(MW⋅h) | 500 | 储热罐初始容量/(MW⋅h) | 100 | |||||||
| 最大、最小储氢功率/MW | 125、0 | 最大、最小储热功率/MW | 40、0 | |||||||
| 最大、最小释氢功率/MW | 125、0 | 最大、最小放热功率/MW | 40、0 | 
Table 3 Relevant parameters of each equipment
| 设备 | 参数 | 数值 | 设备 | 参数 | 数值 | |||||
| 储液式碳捕集电厂 | CCPP基础能耗/MW | 3 | 甲烷反应器 | 转换效率/% | 70 | |||||
| CCPP运行能耗系数/((MW⋅h)·t–1) | 0.268 | MR氢功率上、下限/MW | 150、0 | |||||||
| 再生效率、吸收效率/% | 90、90 | MR爬坡上、下限/(MW⋅h–1) | 50、–50 | |||||||
| 富液罐CO2浓度/% | 92.95 | 掺氢热电联产机组 | 掺氢比上、下限/% | 20、10 | ||||||
| 富液罐储液上、下限/m3 | 转换效率/% | 92 | ||||||||
| 贫液罐储液上、下限/m3 | 可调电热比上、下限 | 2.08、0.48 | ||||||||
| 富液罐/贫液罐初始容量/m3 | CHP混合燃气功率上、下限/MW | 210、0 | ||||||||
| 燃煤机组单位发电量的碳排放强度/(t·(MW⋅h)–1) | 1.02 | CHP爬坡上、下限/(MW⋅h–1) | ±45 | |||||||
| 燃煤机组出力上、下限/MW | 400、100 | 耗天然气型碳排放系数a1、b1、c1 | 3、–0.004、0.001 | |||||||
| 燃煤机组爬坡上、下限/(MW⋅h–1) | 125、–125 | 掺氢燃气锅炉 | 掺氢比上、下限/% | 20、2 | ||||||
| 单位发电量燃煤成本/(万元·(MW⋅h)–1) | 0.042 | 转换效率/% | 80 | |||||||
| 燃煤机组的碳排放系数a2、b2、c2 | 36、–0.38、 | GB混合燃气功率上、下限/MW | 120、0 | |||||||
| 碳封存成本/(万元·t–1) | 0.004 | GB爬坡上、下限/(MW⋅h–1) | 40、–40 | |||||||
| 电解槽 | 转换效率/% | 75 | 有机朗肯循环系统 | 转换效率/% | 80 | |||||
| EL电功率上、下限/MW | 200、0 | ORC输入功率上、下限/MW | 100、0 | |||||||
| EL爬坡上、下限/(MW⋅h–1) | 40、–40 | ORC爬坡上、下限/(MW⋅h–1) | 50、–50 | |||||||
| 储氢罐 | 储氢、释氢效率/% | 均95 | 储热罐 | 储热、放热效率/% | 均85 | |||||
| 储氢罐容量上、下限/(MW⋅h) | 储热罐容量上、下限/(MW⋅h) | 200、30 | ||||||||
| 储氢罐初始容量/(MW⋅h) | 500 | 储热罐初始容量/(MW⋅h) | 100 | |||||||
| 最大、最小储氢功率/MW | 125、0 | 最大、最小储热功率/MW | 40、0 | |||||||
| 最大、最小释氢功率/MW | 125、0 | 最大、最小放热功率/MW | 40、0 | 
| 方 案  | 总成本 | 燃煤 成本  | 购气 成本  | 售电 成本  | 购电 成本  | 碳交易 成本  | 碳封存 成本  | 弃风惩 罚成本  | 弃光惩 罚成本  | |||||||||
| 1 | 289.6 | 246.7 | –16.0 | 52.5 | 3.3 | 3.1 | 0 | |||||||||||
| 2 | 267.8 | 231.9 | –18.4 | 50.3 | 0.8 | 3.2 | 0 | |||||||||||
| 3 | 266.6 | 113.0 | 199.0 | –24.8 | 0 | –30.8 | 10.1 | 0 | 0 | |||||||||
| 4 | 252.6 | 105.5 | 196.1 | –27.8 | 0 | –31.0 | 9.7 | 0 | 0 | 
Table 4 Optimized operational results for 4 schemes 单位:万元
| 方 案  | 总成本 | 燃煤 成本  | 购气 成本  | 售电 成本  | 购电 成本  | 碳交易 成本  | 碳封存 成本  | 弃风惩 罚成本  | 弃光惩 罚成本  | |||||||||
| 1 | 289.6 | 246.7 | –16.0 | 52.5 | 3.3 | 3.1 | 0 | |||||||||||
| 2 | 267.8 | 231.9 | –18.4 | 50.3 | 0.8 | 3.2 | 0 | |||||||||||
| 3 | 266.6 | 113.0 | 199.0 | –24.8 | 0 | –30.8 | 10.1 | 0 | 0 | |||||||||
| 4 | 252.6 | 105.5 | 196.1 | –27.8 | 0 | –31.0 | 9.7 | 0 | 0 | 
| 1 | 李红伟, 吴佳航, 王佳怡, 等. 计及P2G及碳捕集的风光氢储综合能源系统低碳经济调度[J]. 电力系统保护与控制, 2024, 52 (16): 26- 36. | 
| LI Hongwei, WU Jiahang, WANG Jiayi, et al. Low-carbon economic dispatch of a wind, solar, and hydrogen storage integrated energy systemconsidering P2G and carbon capture[J]. Power System Protection and Control, 2024, 52 (16): 26- 36. | |
| 2 | 刘珂, 顾雪平, 白岩松, 等. 考虑风电不确定性的电力系统在线动态分区恢复优化方法[J]. 电力系统保护与控制, 2024, 52 (19): 60- 73. | 
| LIU Ke, GU Xueping, BAI Yansong, et al. nline dynamic partition restoration optimization method of a power systemconsidering wind power uncertainty[J]. Power System Protection and Control, 2024, 52 (19): 60- 73. | |
| 3 | 朱明, 夏宇栋, 常凯, 等. 基于粒子群优化算法的空调负荷灰箱模型辨识[J]. 电力科学与技术学报, 2023, 38 (4): 214- 221. | 
| ZHU Ming, XIA Yudong, CHANG Kai, et al. Identification of grey box model for air conditioning load based on particleswarm optimization algorithm[J]. Journal of Electric Power Science and Technology, 2023, 38 (4): 214- 221. | |
| 4 | 朱霄珣, 刘占田, 薛劲飞, 等. 计及柔性负荷参与的综合能源系统优化调度[J]. 太阳能学报, 2023, 44 (9): 29- 38. | 
| ZHU Xiaoxun, LIU Zhantian, XUE Jinfei, et al. Optimal scheduling of integrated energy system with flexible load participation[J]. Acta Energiae Solaris Sinica, 2023, 44 (9): 29- 38. | |
| 5 |  
											LI M S, LIN Z J, JI T Y, et al. Risk constrained stochastic economic dispatch considering dependence of multiple wind farms using pair-copula[J]. Applied Energy, 2018, 226, 967- 978. 
																							 DOI  | 
										
| 6 | 王冠, 李鹏, 焦扬, 等. 计及风光不确定性的虚拟电厂多目标随机调度优化模型[J]. 中国电力, 2017, 50 (5): 107- 113. | 
| WANG Guan, LI Peng, JIAO Yang, et al. Multi-objective stochastic scheduling optimization model for virtual power plant considering uncertainty of wind and photovoltaic power[J]. Electric Power, 2017, 50 (5): 107- 113. | |
| 7 | 杨晓峰, 方逸航, 赵鹏臻, 等. 基于K-means和BPNN的风机状态识别[J]. 中国电力, 2023, 56 (6): 158- 166, 175. | 
| YANG Xiaofeng, FANG Yihang, ZHAO Pengzhen, et al. State recognition of wind turbines based on K-means and BPNN[J]. Electric Power, 2023, 56 (6): 158- 166, 175. | |
| 8 | 南斌, 姜春娣, 董树锋, 等. 计及源荷不确定性的综合能源系统日前-日内协调优化调度[J]. 电网技术, 2023, 47 (9): 3669- 3683. | 
| NAN Bin, JIANG Chundi, DONG Shufeng, et al. Day-ahead and intra-day coordinated optimal scheduling of integrated energy system considering uncertainties in source and load[J]. Power System Technology, 2023, 47 (9): 3669- 3683. | |
| 9 | 崔杨, 邓贵波, 曾鹏, 等. 计及碳捕集电厂低碳特性的含风电电力系统源–荷多时间尺度调度方法[J]. 中国电机工程学报, 2022, 42 (16): 5869- 5886, 6163. | 
| CUI Yang, DENG Guibo, ZENG Peng, et al. Multi-time scale source-load dispatch method of power system with wind power considering low-carbon characteristics of carbon capture power plant[J]. Proceedings of the CSEE, 2022, 42 (16): 5869- 5886, 6163. | |
| 10 | 贠保记, 张恩硕, 张国, 等. 考虑综合需求响应与“双碳”机制的综合能源系统优化运行[J]. 电力系统保护与控制, 2022, 50 (22): 11- 19. | 
| YUN Baoji, ZHANG Enshuo, ZHANG Guo, et al. Operation of an integrated energy system considering integrated demand response and a "dual carbon" mechanism[J]. Power System Protection and Control, 2022, 50 (22): 11- 19. | |
| 11 | 朱振山, 盛明鼎, 陈哲盛. 计及液态空气储能与综合需求响应的综合能源系统低碳经济调度[J]. 电力自动化设备, 2022, 42 (12): 1- 8. | 
| ZHU Zhenshan, SHENG Mingding, CHEN Zhesheng. Low-carbon economic dispatching of integrated energy system considering liquid air energy storage and integrated demand response[J]. Electric Power Automation Equipment, 2022, 42 (12): 1- 8. | |
| 12 | 张栋顺, 全恒立, 谢桦, 等. 考虑碳交易机制与氢混天然气的园区综合能源系统调度策略[J]. 中国电力, 2024, 57 (2): 183- 193. | 
| ZHANG Dongshun, QUAN Henghua, XIE Hua, et al. Dispatching strategy of park-level integrated energy system considering carbon trading mechanism and hydrogen blending natural gas[J]. Electric Power, 2024, 57 (2): 183- 193. | |
| 13 | 朱西平, 江强, 刘明航, 等. 计及源-荷不确定性的综合能源系统两阶段优化调度[J]. 电力自动化设备, 2023, 43 (8): 9- 16. | 
| ZHU Xiping, JIANG Qiang, LIU Minghang, et al. Two-stage optimal scheduling of integrated energy system considering source-load uncertainty[J]. Electric Power Automation Equipment, 2023, 43 (8): 9- 16. | |
| 14 | 邹宇航, 曾艾东, 郝思鹏, 等. 阶梯式碳交易机制下综合能源系统多时间尺度优化调度[J]. 电网技术, 2023, 47 (6): 2185- 2198. | 
| ZOU Yuhang, ZENG Aidong, HAO Sipeng, et al. Multi-time-scale optimal dispatch of integrated energy systems under stepped carbon trading mechanism[J]. Power System Technology, 2023, 47 (6): 2185- 2198. | |
| 15 | 邢海军, 叶宇静, 刘哲远, 等. 含多种灵活性资源的综合能源系统低碳优化调度[J]. 浙江大学学报(工学版), 2024, 58 (6): 1243- 1254. | 
| XING Haijun, YE Yujing, LIU Zheyuan, et al. Low-carbon optimal scheduling of integrated energy system considering multiple flexible resources[J]. Journal of Zhejiang University(Engineering Science), 2024, 58 (6): 1243- 1254. | |
| 16 | 刘泽洪, 孟婧, 张瑾轩, 等. 电-氢-碳耦合促进新能源基地开发模式研究[J]. 全球能源互联网, 2024, 7 (5): 473- 491. | 
| LIU Zehong, MENG Jing, ZHANG Jinxuan, et al. Research on the development model of new energy bases based on the electricity-hydrogen-carbon synergy[J]. Journal of Global Energy Interconnection, 2024, 7 (5): 473- 491. | |
| 17 | 孔令国, 王嘉祺, 韩子娇, 等. 基于权重调节模型预测控制的风-光-储-氢耦合系统在线功率调控[J]. 电工技术学报, 2023, 38 (15): 4192- 4207. | 
| KONG Lingguo, WANG Jiaqi, HAN Zijiao, et al. On-Line power regulation of wind-photovoltaic-storage-hydrogen coupling system based on weight adjustment model predictive control[J]. Transactions of China Electrotechnical Society, 2023, 38 (15): 4192- 4207. | |
| 18 | 王冲, 陆煜, 左娟, 等. 计及光热电站与风氢系统互补运行的低碳经济调度策略[J]. 电力自动化设备, 2023, 43 (12): 188- 196. | 
| WANG Chong, LU Yu, ZUO Juan, et al. Low-carbon economic scheduling strategy with complementary operation of concentrated solar power plant and wind-hydrogen system[J]. Electric Power Automation Equipment, 2023, 43 (12): 188- 196. | |
| 19 | 陈明健, 陈胜, 王异成, 等. 考虑氢能绿证的电-氢综合能源系统机会约束优化调度[J]. 电力自动化设备, 2023, 43 (12): 206- 213. | 
| CHEN Mingjian, CHEN Sheng, WANG Yicheng, et al. Chance constrained optimal scheduling of electric-hydrogen integrated energy system considering green certificate of hydrogen energy[J]. Electric Power Automation Equipment, 2023, 43 (12): 206- 213. | |
| 20 |  
											李江南, 程韧俐, 周保荣, 等. 含碳捕集及电转氢设备的低碳园区综合能源系统随机优化调度[J]. 中国电力, 2024, 57 (5): 149- 156. 
																							 DOI  | 
										
|  
											LI Jiangnan, CHEN Renli, ZHOU Baorong, et al. Stochastic optimal of integrated energy system in low-carbon parks considering carbon capture storage and power to hydrogen[J]. Electric Power, 2024, 57 (5): 149- 156. 
																							 DOI  | 
										|
| 21 |  
											李奇, 邹雪俐, 蒲雨辰, 等. 基于氢储能的热电联供型微电网优化调度方法[J]. 西南交通大学学报, 2023, 58 (1): 9- 21. 
																							 DOI  | 
										
|  
											LI Qi, ZOU Xueli, PU Yuchen, et al. Optimal schedule of combined heat-power microgrid based on hydrogen energy storage[J]. Journal of Southwest Jiaotong University, 2023, 58 (1): 9- 21. 
																							 DOI  | 
										|
| 22 | 黎观海, 朱建全, 赵文猛, 等. 考虑灵活性不足风险的园区综合能源系统优化调度[J]. 高电压技术, 2024, 50 (2): 704- 713. | 
| LI Guanhai, ZHU Jianquan, ZHAO Wenmeng, et al. Optimal dispatch of park-level integrated energy systems considering the risk of insufficient operational flexibility[J]. High Voltage Engineering, 2024, 50 (2): 704- 713. | |
| 23 |  
											杜妍, 裴玮, 葛贤军, 等. 综合能源微网系统的滚动优化经济调度[J]. 电力系统及其自动化学报, 2017, 29 (11): 20- 25. 
																							 DOI  | 
										
|  
											DU Yan, PEI Wei, GE Xianjun, et al. Rolling optimization of economic dispatching for multi-energy micro-grid system[J]. Proceedings of the CSU-EPSA, 2017, 29 (11): 20- 25. 
																							 DOI  | 
										|
| 24 | 王永利, 向皓, 郭璐, 等. 面向多能互补的分布式光伏与电氢混合储能规划优化研究[J]. 电网技术, 2024, 48 (2): 564- 576. | 
| WANG Yongli, XIANG Hao, GUO Lu, et al. Research on planning optimization of distributed photovoltaic and electro-hydrogen hybrid energy storage for multi-energy complementarity[J]. Power System Technology, 2024, 48 (2): 564- 576. | |
| 25 |  
											MEHRJERDI H, SABOORI H, JADID S. Power-to-gas utilization in optimal sizing of hybrid power, water, and hydrogen microgrids with energy and gas storage[J]. Journal of Energy Storage, 2022, 45, 103745. 
																							 DOI  | 
										
| 26 | 胡俊杰, 童宇轩, 刘雪涛, 等. 计及精细化氢能利用的综合能源系统多时间尺度鲁棒优化策略[J]. 电工技术学报, 2024, 39 (5): 1419- 1435. | 
| HU Junjie, TONG Yuxuan, LIU Xuetao, et al. Multi-time-scale robust optimization strategy for integrated energy system considering the refinement of hydrogen energy use[J]. Transactions of China Electrotechnical Society, 2024, 39 (5): 1419- 1435. | |
| 27 | 陈登勇, 刘方, 刘帅. 基于阶梯碳交易的含P2G-CCS耦合和燃气掺氢的虚拟电厂优化调度[J]. 电网技术, 2022, 46 (6): 2042- 2054. | 
| CHEN Dengyong, LIU Fang, LIU Shuai. Optimization of virtual power plant scheduling coupling with P2G-CCS and doped with gas hydrogen based on stepped carbon trading[J]. Power System Technology, 2022, 46 (6): 2042- 2054. | |
| 28 |  
											张曼铮, 肖猛, 闫沛伟, 等. 危废焚烧处理耦合有机朗肯循环系统工质筛选与热力学优化[J]. 化工学报, 2023, 74 (8): 3502- 3512. 
																							 DOI  | 
										
|  
											ZHANG Manzheng, XIAO Meng, YAN Peiwei, et al. Working fluid screening and thermodynamic optimization of hazardous waste incineration coupled organic Rankine cycle system[J]. CIESC Journal, 2023, 74 (8): 3502- 3512. 
																							 DOI  | 
										|
| 29 |  
											刘妍, 胡志坚, 陈锦鹏, 等. 含碳捕集电厂与氢能多元利用的综合能源系统低碳经济调度[J]. 电力系统自动化, 2024, 48 (1): 31- 40. 
																							 DOI  | 
										
|  
											LIU Yan, HU Zhijian, CHEN Jinpeng, et al. Low-carbon economic dispatch of integrated energy system considering carbon capture power plant and multi-utilization of hydrogen energy[J]. Automation of Electric Power Systems, 2024, 48 (1): 31- 40. 
																							 DOI  | 
										|
| 30 | 刘睿捷, 包哲静, 林振智. 考虑双层奖惩型碳交易机制的源网荷分布协同低碳经济调度[J]. 电力系统自动化, 2024, 48 (9): 11- 20. | 
| LIU Ruijie, BAO Zhejing, LIN Zhenzhi, et al. Distributed collaborative low-carbon economic dispatching of source, grid and load considering dual-layer carbon trading mechanism with reward and punishment[J]. Automation of Electric Power Systems, 2024, 48 (9): 11- 20. | 
| Viewed | ||||||
| 
										Full text | 
									
										 | 
								|||||
| 
										Abstract | 
									
										 | 
								|||||
