Electric Power ›› 2025, Vol. 58 ›› Issue (2): 164-175.DOI: 10.11930/j.issn.1004-9649.202404069
• Power System • Previous Articles Next Articles
					
													Jingcheng HU1(
), Yunhao FAN1, Tong ZHU1, Zhenping CHEN1,2,3(
)
												  
						
						
						
					
				
Received:2024-04-15
															
							
															
							
																	Accepted:2024-07-14
															
							
																	Online:2025-02-23
															
							
							
																	Published:2025-02-28
															
							
						Supported by:CLC Number:
Jingcheng HU, Yunhao FAN, Tong ZHU, Zhenping CHEN. Distributed Low-Carbon Economic Dispatch for Integrated Energy System Based on Homomorphic Encryption[J]. Electric Power, 2025, 58(2): 164-175.
| 子系统 | 参数 | |||||||
| 1 | 0.673 | 6.0 | 0.599 | 0.223 | ||||
| 2 | 0.337 | 6.5 | 0.526 | 0.215 | ||||
| 3 | 0.241 | 6.2 | 0.561 | 0.147 | ||||
| 4 | 0.241 | 3.0 | 0.502 | 0.153 | ||||
| 5 | 0.069 | 3.0 | 0.582 | 0.225 | ||||
| 6 | 0.080 | 5.1 | 0.554 | 0.196 | ||||
| 7 | 0.028 | 2.8 | 0.550 | 0.201 | ||||
| 8 | 0.018 | 5.3 | 0.573 | 0.182 | ||||
| 9 | 0.090 | 3.2 | 0.511 | 0.213 | ||||
| 10 | 0.077 | 4.5 | 0.551 | 0.125 | ||||
| 11 | 0.029 | 5.9 | 0.569 | 0.185 | ||||
| 12 | 0.070 | 5.5 | 0.548 | 0.224 | ||||
| 13 | 0.039 | 3.4 | 0.560 | 0.184 | ||||
| 14 | 0.026 | 5.8 | 0.558 | 0.177 | ||||
Table 2 Parameter settings for heating supply unit simulation
| 子系统 | 参数 | |||||||
| 1 | 0.673 | 6.0 | 0.599 | 0.223 | ||||
| 2 | 0.337 | 6.5 | 0.526 | 0.215 | ||||
| 3 | 0.241 | 6.2 | 0.561 | 0.147 | ||||
| 4 | 0.241 | 3.0 | 0.502 | 0.153 | ||||
| 5 | 0.069 | 3.0 | 0.582 | 0.225 | ||||
| 6 | 0.080 | 5.1 | 0.554 | 0.196 | ||||
| 7 | 0.028 | 2.8 | 0.550 | 0.201 | ||||
| 8 | 0.018 | 5.3 | 0.573 | 0.182 | ||||
| 9 | 0.090 | 3.2 | 0.511 | 0.213 | ||||
| 10 | 0.077 | 4.5 | 0.551 | 0.125 | ||||
| 11 | 0.029 | 5.9 | 0.569 | 0.185 | ||||
| 12 | 0.070 | 5.5 | 0.548 | 0.224 | ||||
| 13 | 0.039 | 3.4 | 0.560 | 0.184 | ||||
| 14 | 0.026 | 5.8 | 0.558 | 0.177 | ||||
| 子系统 | 参数 | |||||||
| 1 | 0.280 | 60.0 | 0.90 | 0.25 | ||||
| 2 | 0.192 | 65.0 | 0.85 | 0.18 | ||||
| 3 | 0.172 | 62.0 | 0.89 | 0.12 | ||||
| 4 | 0.252 | 30.0 | 0.91 | 0.23 | ||||
| 5 | 0.023 | 30.0 | 0.82 | 0.28 | ||||
| 6 | 0.081 | 50.0 | 0.93 | 0.16 | ||||
| 7 | 0.012 | 30.0 | 0.83 | 0.15 | ||||
| 8 | 0.081 | 60.0 | 0.86 | 0.14 | ||||
| 9 | 0.093 | 30.0 | 0.92 | 0.11 | ||||
| 10 | 0.011 | 45.0 | 0.80 | 0.22 | ||||
| 11 | 0.011 | 59.0 | 0.88 | 0.13 | ||||
| 12 | 0.057 | 55.0 | 0.95 | 0.17 | ||||
| 13 | 0.024 | 60.0 | 0.84 | 0.19 | ||||
| 14 | 0.056 | 58.0 | 0.81 | 0.26 | ||||
Table 1 Parameter settings for power supply unit simulation
| 子系统 | 参数 | |||||||
| 1 | 0.280 | 60.0 | 0.90 | 0.25 | ||||
| 2 | 0.192 | 65.0 | 0.85 | 0.18 | ||||
| 3 | 0.172 | 62.0 | 0.89 | 0.12 | ||||
| 4 | 0.252 | 30.0 | 0.91 | 0.23 | ||||
| 5 | 0.023 | 30.0 | 0.82 | 0.28 | ||||
| 6 | 0.081 | 50.0 | 0.93 | 0.16 | ||||
| 7 | 0.012 | 30.0 | 0.83 | 0.15 | ||||
| 8 | 0.081 | 60.0 | 0.86 | 0.14 | ||||
| 9 | 0.093 | 30.0 | 0.92 | 0.11 | ||||
| 10 | 0.011 | 45.0 | 0.80 | 0.22 | ||||
| 11 | 0.011 | 59.0 | 0.88 | 0.13 | ||||
| 12 | 0.057 | 55.0 | 0.95 | 0.17 | ||||
| 13 | 0.024 | 60.0 | 0.84 | 0.19 | ||||
| 14 | 0.056 | 58.0 | 0.81 | 0.26 | ||||
| 子系统 | 参数 | |||||||
| 1 | 0.257 | 22.6 | 0.558 | 0.166 | ||||
| 2 | 0.158 | 10.5 | 0.483 | 0.174 | ||||
| 3 | 0.214 | 11.2 | 0.622 | 0.129 | ||||
| 4 | 0.280 | 10.8 | 0.581 | 0.192 | ||||
| 5 | 0.046 | 3.6 | 0.485 | 0.167 | ||||
| 6 | 0.058 | 5.1 | 0.623 | 0.165 | ||||
| 7 | 0.073 | 3.3 | 0.522 | 0.150 | ||||
| 8 | 0.062 | 4.2 | 0.446 | 0.160 | ||||
| 9 | 0.018 | 3.1 | 0.618 | 0.161 | ||||
| 10 | 0.051 | 4.5 | 0.452 | 0.133 | ||||
| 11 | 0.010 | 5.9 | 0.494 | 0.185 | ||||
| 12 | 0.040 | 5.5 | 0.481 | 0.146 | ||||
| 13 | 0.055 | 6.2 | 0.595 | 0.169 | ||||
| 14 | 0.056 | 5.8 | 0.576 | 0.131 | ||||
Table 3 Parameter settings for gas supply unit simulation
| 子系统 | 参数 | |||||||
| 1 | 0.257 | 22.6 | 0.558 | 0.166 | ||||
| 2 | 0.158 | 10.5 | 0.483 | 0.174 | ||||
| 3 | 0.214 | 11.2 | 0.622 | 0.129 | ||||
| 4 | 0.280 | 10.8 | 0.581 | 0.192 | ||||
| 5 | 0.046 | 3.6 | 0.485 | 0.167 | ||||
| 6 | 0.058 | 5.1 | 0.623 | 0.165 | ||||
| 7 | 0.073 | 3.3 | 0.522 | 0.150 | ||||
| 8 | 0.062 | 4.2 | 0.446 | 0.160 | ||||
| 9 | 0.018 | 3.1 | 0.618 | 0.161 | ||||
| 10 | 0.051 | 4.5 | 0.452 | 0.133 | ||||
| 11 | 0.010 | 5.9 | 0.494 | 0.185 | ||||
| 12 | 0.040 | 5.5 | 0.481 | 0.146 | ||||
| 13 | 0.055 | 6.2 | 0.595 | 0.169 | ||||
| 14 | 0.056 | 5.8 | 0.576 | 0.131 | ||||
| 方法 | 迭代次数 | |||||
| 电增量成本 | 热增量成本 | 气增量成本 | ||||
| 文献[ | 184 | 183 | 185 | |||
| 本文 | 82 | 81 | 79 | |||
Table 4 Algorithm optimality comparison results
| 方法 | 迭代次数 | |||||
| 电增量成本 | 热增量成本 | 气增量成本 | ||||
| 文献[ | 184 | 183 | 185 | |||
| 本文 | 82 | 81 | 79 | |||
| 是否引入碳交易机制 | 系统碳排放量/kg | 碳交易成本/元 | ||
| 否 | 623.05 | |||
| 是 | 597.15 | 
Table 5 Comparison of the introduction of carbon trading mechanisms
| 是否引入碳交易机制 | 系统碳排放量/kg | 碳交易成本/元 | ||
| 否 | 623.05 | |||
| 是 | 597.15 | 
| 1 | 邓杰, 姜飞, 王文烨, 等. 考虑电热柔性负荷与氢能精细化建模的综合能源系统低碳运行[J]. 电网技术, 2022, 46 (5): 1692- 1702. | 
| DENG Jie, JIANG Fei, WANG Wenye, et al. Low-carbon optimized operation of integrated energy system considering electric-heat flexible load and hydrogen energy refined modeling[J]. Power System Technology, 2022, 46 (5): 1692- 1702. | |
| 2 | 李欣, 陈英彰, 李涵文, 等. 考虑碳交易的电-热综合能源系统两阶段鲁棒优化低碳经济调度[J]. 电力建设, 2024, 45 (6): 58- 69. | 
| LI Xin, CHEN Yingzhang, LI Hanwen, et al. Two-stage robust optimization of low-carbon economic dispatch for electricity-thermal integrated energy system considering carbon trade[J]. Electric Power Construction, 2024, 45 (6): 58- 69. | |
| 3 | 王永利, 韩煦, 刘晨, 等. 基于生-光耦合利用的乡村电-热综合能源系统规划[J]. 电力建设, 2023, 44 (3): 1- 14. | 
| WANG Yongli, HAN Xu, LIU Chen, et al. Rural electricity-heat integrated energy system planning based on coupling utilization of biomass and solar resources[J]. Electric Power Construction, 2023, 44 (3): 1- 14. | |
| 4 | 崔文倩, 魏军强, 赵云灏, 等. 双碳目标下含重力储能的配电网多目标运行优化[J]. 电力建设, 2023, 44 (4): 45- 53. | 
| CUI Wenqian, WEI Junqiang, ZHAO Yunhao, et al. Multi-objective operation optimization of distribution network with gravity energy storage under double carbon target[J]. Electric Power Construction, 2023, 44 (4): 45- 53. | |
| 5 | 黎静华, 朱梦姝, 陆悦江, 等. 综合能源系统优化调度综述[J]. 电网技术, 2021, 45 (6): 2256- 2269. | 
| LI Jinghua, ZHU Mengshu, LU Yuejiang, et al. Review on optimal scheduling of integrated energy systems[J]. Power System Technology, 2021, 45 (6): 2256- 2269. | |
| 6 |  
											张沈习, 王丹阳, 程浩忠, 等. 双碳目标下低碳综合能源系统规划关键技术及挑战[J]. 电力系统自动化, 2022, 46 (8): 189- 207. 
																							 DOI  | 
										
|  
											ZHANG Shenxi, WANG Danyang, CHENG Haozhong, et al. Key technologies and challenges of low-carbon integrated energy system planning for carbon emission peak and carbon neutrality[J]. Automation of Electric Power Systems, 2022, 46 (8): 189- 207. 
																							 DOI  | 
										|
| 7 | 原希尧, 王关涛, 朱若源, 等. 碳-绿色证书交易机制下考虑回收P2G余热和需求响应的PIES优化调度[J]. 电力建设, 2023, 44 (3): 25- 35. | 
| YUAN Xiyao, WANG Guantao, ZHU Ruoyuan, et al. Optimal scheduling of park integrated energy system with P2G waste heat recovery and demand response under carbon-green certificate trading mechanism[J]. Electric Power Construction, 2023, 44 (3): 25- 35. | |
| 8 |  
											TANG Z Y, HILL D J, LIU T. A novel consensus-based economic dispatch for microgrids[J]. IEEE Transactions on Smart Grid, 2018, 9 (4): 3920- 3922. 
																							 DOI  | 
										
| 9 | 米阳, 彭建伟, 陈博洋, 等. 基于一致性原理和梯度下降法的微电网完全分布式优化调度[J]. 电力系统保护与控制, 2022, 50 (15): 1- 10. | 
| MI Yang, PENG Jianwei, CHEN Boyang, et al. Fully distributed optimal dispatch of a microgrid based on consensus principle and gradient descent[J]. Power System Protection and Control, 2022, 50 (15): 1- 10. | |
| 10 |  
											王彬, 孙勇, 吴文传, 等. 协同电网安全性与经济性的新能源优先实时调度方法及应用[J]. 电力系统自动化, 2020, 44 (16): 105- 113. 
																							 DOI  | 
										
|  
											WANG Bin, SUN Yong, WU Wenchuan, et al. Real-time prior dispatch method for renewable energy with safety and economy coordination of power grid and its application[J]. Automation of Electric Power Systems, 2020, 44 (16): 105- 113. 
																							 DOI  | 
										|
| 11 | 崔杨, 郭福音, 仲悟之, 等. 多重不确定性环境下的综合能源系统区间多目标优化调度[J]. 电网技术, 2022, 46 (8): 2964- 2974. | 
| CUI Yang, GUO Fuyin, ZHONG Wuzhi, et al. Interval multi-objective optimal dispatch of integrated energy system under multiple uncertainty environment[J]. Power System Technology, 2022, 46 (8): 2964- 2974. | |
| 12 |  
											张博, 唐巍, 蔡永翔, 等. 基于一致性算法的户用光伏逆变器和储能分布式控制策略[J]. 电力系统自动化, 2020, 44 (2): 86- 94. 
																							 DOI  | 
										
|  
											ZHANG Bo, TANG Wei, CAI Yongxiang, et al. Distributed control strategy of residential photovoltaic inverter and energy storage based on consensus algorithm[J]. Automation of Electric Power Systems, 2020, 44 (2): 86- 94. 
																							 DOI  | 
										|
| 13 |  
											HAN H C, ZHANG H G, YANG J, et al. Distributed model predictive consensus control for stable operation of integrated energy system[J]. IEEE Transactions on Smart Grid, 2024, 15 (1): 381- 393. 
																							 DOI  | 
										
| 14 |  
											YANG J, SUN F Y, WANG H T. Distributed collaborative optimal economic dispatch of integrated energy system based on edge computing[J]. Energy, 2023, 284, 129194. 
																							 DOI  | 
										
| 15 | 贺文, 陈珍萍, 胡伏原, 等. 基于一致性的综合能源系统低碳经济调度[J]. 电力系统保护与控制, 2023, 51 (19): 42- 53. | 
| HE Wen, CHEN Zhenping, HU Fuyuan, et al. Consensus-based low-carbon economic dispatching of integrated energy systems[J]. Power System Protection and Control, 2023, 51 (19): 42- 53. | |
| 16 |  
											HUO X, LIU M X. Privacy-preserving distributed multi-agent cooperative optimization—paradigm design and privacy analysis[J]. IEEE Control Systems Letters, 2022, 6, 824- 829. 
																							 DOI  | 
										
| 17 | 高晗, 李正烁. 具有完全隐私保护的电-气综合能源系统分布式协同算法[J]. 电力系统自动化, 2023, 47 (8): 71- 79. | 
| GAO Han, LI Zhengshuo. Full privacy-preserving decentralized coordination algorithm for integrated electricity-gas energy systems[J]. Automation of Electric Power Systems, 2023, 47 (8): 71- 79. | |
| 18 | 杨飞生, 刘佳明, 丁瑞森, 等. 基于半同态加密体制的安全分布式经济调度[J/OL]. 控制理论与应用: 1–9[2024-06-17]. http://kns.cnki.net/kcms/detail/44.1240.TP.20240416.0935.022.html. | 
| YANG Feisheng, LIU Jiaming, DING Ruisen, et al. Secure distributed economic scheduling based on semi-homomorphic encryption system[J/OL]. Control Theory & Applications: 1–9[2024-06-17]. http://kns.cnki.net/kcms/detail/44.1240.TP.20240416.0935.022.html. | |
| 19 | 樊晓伟, 王瑞妙, 杨海峰, 等. 计及源荷不确定的综合能源微电网集群优化运行[J]. 电力建设, 2024, 45 (8): 128- 139. | 
| FAN Xiaowei, WANG Ruimiao, YANG Haifeng, et al. Optimization operation of integrated energy microgrid cluster considering source-load uncertainty[J]. Electric Power Construction, 2024, 45 (8): 128- 139. | |
| 20 |  
											LIU L N, YANG G H. Distributed optimal energy management for integrated energy systems[J]. IEEE Transactions on Industrial Informatics, 2022, 18 (10): 6569- 6580. 
																							 DOI  | 
										
| 21 | 傅观君, 张富强, 夏鹏, 等. 天然气发电在新型电力系统中的功能定位及发展前景研判[J]. 中国电力, 2024, 57 (8): 67- 74. | 
| FU Guanjun, ZHANG Fuqiang, XIA Peng, et al. Study on the functional orientation and development prospect of natural gas power generation in new power system[J]. Electric Power, 2024, 57 (8): 67- 74. | |
| 22 | 郭宴秀, 苏建军, 刘洋, 等. 考虑电热交互和共享储能的多综合能源系统运行优化[J]. 中国电力, 2023, 56 (4): 138- 145. | 
| GUO Yanxiu, SU Jianjun, LIU Yang, et al. Optimal operation of multiple integrated energy systems considering power and heat interaction and shared energy storage system[J]. Electric Power, 2023, 56 (4): 138- 145. | |
| 23 | 秦婷, 刘怀东, 王锦桥, 等. 基于碳交易的电—热—气综合能源系统低碳经济调度[J]. 电力系统自动化, 2018, 42 (14): 8- 13, 22. | 
| QIN Ting, LIU Huaidong, WANG Jinqiao, et al. Carbon trading based low-carbon economic dispatch for integrated electricity-heat-gas energy system[J]. Automation of Electric Power Systems, 2018, 42 (14): 8- 13, 22. | |
| 24 | 崔杨, 曾鹏, 仲悟之, 等. 考虑阶梯式碳交易的电-气-热综合能源系统低碳经济调度[J]. 电力自动化设备, 2021, 41 (3): 10- 17. | 
| UI Yang, ZENG Peng, ZHONG Wuzhi, et al. Low-carbon economic dispatch of electricity-gas-heat integrated energy system based on ladder-type carbon trading[J]. Electric Power Automation Equipment, 2021, 41 (3): 10- 17. | |
| 25 |  
											CHEN W S, LI T. Distributed economic dispatch for energy internet based on multiagent consensus control[J]. IEEE Transactions on Automatic Control, 2021, 66 (1): 137- 152. 
																							 DOI  | 
										
| 26 | LI Y, WANG C L, LI G Q, et al. Improving operational flexibility of integrated energy system with uncertain renewable generations considering thermal inertia of buildings[J]. Energy Conversion and Management, 2020, 207, 112526. | 
| 27 | CHEN Y B, YAO Y, ZHANG Y. A robust state estimation method based on SOCP for integrated electricity-heat system[J]. IEEE Transactions on Smart Grid, 2021, 12 (1): 810- 820. | 
| 28 | 陈志, 胡志坚, 翁菖宏, 等. 基于阶梯碳交易机制的园区综合能源系统多阶段规划[J]. 电力自动化设备, 2021, 41 (9): 148- 155. | 
| CHEN Zhi, HU Zhijian, WENG Changhong, et al. Multi-stage planning of park-level integrated energy system based on ladder-type carbon trading mechanism[J]. Electric Power Automation Equipment, 2021, 41 (9): 148- 155. | |
| 29 | 张晓辉, 刘小琰, 钟嘉庆. 考虑奖惩阶梯型碳交易和电–热转移负荷不确定性的综合能源系统规划[J]. 中国电机工程学报, 2020, 40 (19): 6132- 6142. | 
| ZHANG Xiaohui, LIU Xiaoyan, ZHONG Jiaqing. Integrated energy system planning considering a reward and punishment ladder-type carbon trading and electric-thermal transfer load uncertainty[J]. Proceedings of the CSEE, 2020, 40 (19): 6132- 6142. | |
| 30 | NI L N, LIU W J, WEN F S, et al. Optimal operation of electricity, natural gas and heat systems considering integrated demand responses and diversified storage devices[J]. Journal of Modern Power Systems and Clean Energy, 2018, 6 (3): 423- 437. | 
| 31 | 谢俊, 陈凯旋, 岳东, 等. 基于多智能体系统一致性算法的电力系统分布式经济调度策略[J]. 电力自动化设备, 2016, 36 (2): 112- 117. | 
| XIE Jun, CHEN Kaixuan, YUE Dong, et al. Distributed economic dispatch based on consensus algorithm of multi agent system for power system[J]. Electric Power Automation Equipment, 2016, 36 (2): 112- 117. | 
| Viewed | ||||||
| 
										Full text | 
									
										 | 
								|||||
| 
										Abstract | 
									
										 | 
								|||||
