Electric Power ›› 2024, Vol. 57 ›› Issue (8): 214-226.DOI: 10.11930/j.issn.1004-9649.202312011
• Integrated Energy System Optimization • Previous Articles Next Articles
					
													Hui WANG1,2(
), Kerui ZHOU1(
), Zuohui WU1, Zhichao ZOU1, Xin LI1,2(
)
												  
						
						
						
					
				
Received:2023-12-03
															
							
															
							
																	Accepted:2024-03-02
															
							
																	Online:2024-08-23
															
							
							
																	Published:2024-08-28
															
							
						Supported by:Hui WANG, Kerui ZHOU, Zuohui WU, Zhichao ZOU, Xin LI. Multi-time Scale Optimal Scheduling of Integrated Energy System Coupling Power-to-Gas and Carbon Capture System[J]. Electric Power, 2024, 57(8): 214-226.
| 阶段 | 时段 | 购电电价/ (元·(kW·h)–1)  | 购气气价/ (元·m–3)  | |||||
| 电 | 气 | |||||||
| 低谷 | 00:00—06:00 | 06:00—12:00 18:00—24:00  | 0.47 | 1.57 | ||||
| 高峰 | 06:00—12:00 18:00—24:00  | 00:00—06:00 12:00—18:00  | 1.24 | 2.46 | ||||
| 平稳 | 12:00—18:00 | 0.89 | ||||||
Table 1 Time-of-use electricity/gas prices
| 阶段 | 时段 | 购电电价/ (元·(kW·h)–1)  | 购气气价/ (元·m–3)  | |||||
| 电 | 气 | |||||||
| 低谷 | 00:00—06:00 | 06:00—12:00 18:00—24:00  | 0.47 | 1.57 | ||||
| 高峰 | 06:00—12:00 18:00—24:00  | 00:00—06:00 12:00—18:00  | 1.24 | 2.46 | ||||
| 平稳 | 12:00—18:00 | 0.89 | ||||||
| 设备类型 | 功率/kW | 效率 | 运维费用/ (元·kW–1)  | |||||||
| 上限 | 下限 | 爬坡 | ||||||||
| WT | 2000 | 0 | 0.070 | |||||||
| PV | 0 | 0.157 | 0.039 | |||||||
| MT | 600 | 150 | 120 | 0.930 | 0.040 | |||||
| HRB | 0.350 | |||||||||
| AC | 0.280 | |||||||||
| GB | 600 | 0 | 400 | 0.900 | 0.025 | |||||
| EB | 600 | 0 | 120 | 1.600 | 0.012 | |||||
| EC | 500 | 0 | 100 | 0.800 | 0.028 | |||||
| EL | 500 | 0 | 100 | 0.870 | 0.023 | |||||
| MR | 350 | 0 | 70 | 0.600 | 0.031 | |||||
| CCS | 0 | 100 | 0.550 | 0.012 | ||||||
Table 2 Parameters of different energy conversion devices in the IES system
| 设备类型 | 功率/kW | 效率 | 运维费用/ (元·kW–1)  | |||||||
| 上限 | 下限 | 爬坡 | ||||||||
| WT | 2000 | 0 | 0.070 | |||||||
| PV | 0 | 0.157 | 0.039 | |||||||
| MT | 600 | 150 | 120 | 0.930 | 0.040 | |||||
| HRB | 0.350 | |||||||||
| AC | 0.280 | |||||||||
| GB | 600 | 0 | 400 | 0.900 | 0.025 | |||||
| EB | 600 | 0 | 120 | 1.600 | 0.012 | |||||
| EC | 500 | 0 | 100 | 0.800 | 0.028 | |||||
| EL | 500 | 0 | 100 | 0.870 | 0.023 | |||||
| MR | 350 | 0 | 70 | 0.600 | 0.031 | |||||
| CCS | 0 | 100 | 0.550 | 0.012 | ||||||
| 储能设备 | 容量/kW | 充放电最大 容量/kW  | 充放电容量 变化率  | |||||||
| 初始 | 上限 | 下限 | ||||||||
| EES | 135 | 360 | 90 | 225 | 0.95 | |||||
| TES | 150 | 400 | 100 | 250 | 0.95 | |||||
| CES | 45 | 120 | 30 | 75 | 0.95 | |||||
Table 3 Parameters of energy storage devices
| 储能设备 | 容量/kW | 充放电最大 容量/kW  | 充放电容量 变化率  | |||||||
| 初始 | 上限 | 下限 | ||||||||
| EES | 135 | 360 | 90 | 225 | 0.95 | |||||
| TES | 150 | 400 | 100 | 250 | 0.95 | |||||
| CES | 45 | 120 | 30 | 75 | 0.95 | |||||
| 场景 | 成本/元 | 碳捕集量/t | 总碳排放/t | |||||||||||||||||||
| 运维 | 购电 | 购气 | 购碳 | 碳封存 | 碳交易 | 弃风 | 弃光 | 总计 | ||||||||||||||
| 情景1 | 0 | 0 | 0 | |||||||||||||||||||
| 情景2 | 0 | 0 | ||||||||||||||||||||
| 情景3 | 0 | 754.44 | ||||||||||||||||||||
| 情景4 | 0 | 889.90 | ||||||||||||||||||||
Table 4 Operation results of different scenarios in the day-ahead dispatch system
| 场景 | 成本/元 | 碳捕集量/t | 总碳排放/t | |||||||||||||||||||
| 运维 | 购电 | 购气 | 购碳 | 碳封存 | 碳交易 | 弃风 | 弃光 | 总计 | ||||||||||||||
| 情景1 | 0 | 0 | 0 | |||||||||||||||||||
| 情景2 | 0 | 0 | ||||||||||||||||||||
| 情景3 | 0 | 754.44 | ||||||||||||||||||||
| 情景4 | 0 | 889.90 | ||||||||||||||||||||
| 调试 方式  | 消纳量/kW | 消纳率/% | 日运行 成本/元  | 系统碳 排放/t  | 碳捕集 量/t  | |||||||||
| 风电 | 光伏 | 风电 | 光伏 | |||||||||||
| 日前 | 262.71 | 145.56 | 96.80 | 98.80 | ||||||||||
| 日内 | 263.78 | 146.22 | 97.34 | 99.68 | ||||||||||
| 实时 | 263.97 | 146.05 | 99.48 | 99.28 | ||||||||||
Table 5 Optimization dispatch results for multiple time scales
| 调试 方式  | 消纳量/kW | 消纳率/% | 日运行 成本/元  | 系统碳 排放/t  | 碳捕集 量/t  | |||||||||
| 风电 | 光伏 | 风电 | 光伏 | |||||||||||
| 日前 | 262.71 | 145.56 | 96.80 | 98.80 | ||||||||||
| 日内 | 263.78 | 146.22 | 97.34 | 99.68 | ||||||||||
| 实时 | 263.97 | 146.05 | 99.48 | 99.28 | ||||||||||
| 1 |  
											丘登荣. 新时代绿色低碳循环经济发展体系建设路径[J]. 佳木斯大学社会科学学报, 2023, 41 (3): 17- 19, 23. 
																							 DOI  | 
										
| 2 | 赵昕, 刘知凡, 厉艳, 等. 基于“双碳” 目标下的综合能源规划体系研究[J]. 能源与环保, 2023, 45 (9): 175- 178, 186. | 
| ZHAO Xin, LIU Zhifan, LI Yan, et al. Research on integrated energy planning system based on "dual carbon" target[J]. China Energy and Environmental Protection, 2023, 45 (9): 175- 178, 186. | |
| 3 | 张运洲, 代红才, 吴潇雨, 等. 中国综合能源服务发展趋势与关键问题[J]. 中国电力, 2021, 54 (2): 1- 10. | 
| ZHANG Yunzhou, DAI Hongcai, WU Xiaoyu, et al. Development trends and key issues of China's integrated energy services[J]. Electric Power, 2021, 54 (2): 1- 10. | |
| 4 |  
											贾宏杰, 王丹, 徐宪东, 等. 区域综合能源系统若干问题研究[J]. 电力系统自动化, 2015, 39 (7): 198- 207. 
																							 DOI  | 
										
|  
											JIA Hongjie, WANG Dan, XU Xiandong, et al. Research on some key problems related to integrated energy systems[J]. Automation of Electric Power Systems, 2015, 39 (7): 198- 207. 
																							 DOI  | 
										|
| 5 | LIU W J, WEN F S, XUE Y S. Power-to-gas technology in energy systems: current status and prospects of potential operation strategies[J]. Journal of Modern Power Systems and Clean Energy, 2017, 5 (3): 439- 450. | 
| 6 | 程耀华, 杜尔顺, 田旭, 等. 电力系统中的碳捕集电厂: 研究综述及发展新动向[J]. 全球能源互联网, 2020, 3 (4): 339- 350. | 
| CHENG Yaohua, DU Ershun, TIAN Xu, et al. Carbon capture power plants in power systems: review and latest research trends[J]. Journal of Global Energy Interconnection, 2020, 3 (4): 339- 350. | |
| 7 | 张力为, 甘满光, 王燕, 等. 二氧化碳捕集利用-可再生能源发电调峰耦合技术[J]. 热力发电, 2021, 50 (1): 24- 32. | 
| ZHANG Liwei, GAN Manguang, WANG Yan, et al. Coupled technology of carbon dioxide capture and utilization and renewable power peak shaving[J]. Thermal Power Generation, 2021, 50 (1): 24- 32. | |
| 8 | 崔杨, 闫石, 仲悟之, 等. 含电转气的区域综合能源系统热电优化调度[J]. 电网技术, 2020, 44 (11): 4254- 4264. | 
| CUI Yang, YAN Shi, ZHONG Wuzhi, et al. Optimal thermoelectric dispatching of regional integrated energy system with power-to-gas[J]. Power System Technology, 2020, 44 (11): 4254- 4264. | |
| 9 | 付兆隆, 薛田良, 张磊, 等. 考虑电转气高效用氢的综合能源系统低碳运行[J]. 计算机仿真: 1–8. | 
| FU Zhaolong, XUE Tianliang, ZHANG Lei, et al. Low-carbon operation of integrated energy system considering power-to-gas high-efficiency hydrogen utilization[J]. Computer Simulation: 1–8. | |
| 10 | 李欣, 刘立, 黄婧琪, 等. 含耦合P2G和CCS的园区级综合能源系统优化调度[J]. 电力系统及其自动化学报, 2023, 35 (4): 18- 25. | 
| LI Xin, LIU Li, HUANG Jingqi, et al. Optimal scheduling of park-level integrated energy system with coupling of P2G and CCS[J]. Proceedings of the CSU-EPSA, 2023, 35 (4): 18- 25. | |
| 11 | 李江南, 程韧俐, 刘稼瑾, 等. 含碳捕集及电转氢设备的低碳园区综合能源系统随机优化调度[J/OL]. 中国电力, 2024: 1–8. (2024-01-05).https://kns.cnki.net/kcms/detail/11.3265.TM.20240104.1450.004.html. | 
| LI Jiangnan, CHENG Renli, LIU Jiajin, et al. Stochastic optimal of integrated energy system in low-carbon parks considering carbon capture storage and power to hydrogen[J/OL]. Electric Power, 2024: 1–8. (2024-01-05).https://kns.cnki.net/kcms/detail/11.3265.TM.20240104.1450.004.html. | |
| 12 | 崔杨, 曾鹏, 王铮, 等. 计及电价型需求侧响应含碳捕集设备的电–气–热综合能源系统低碳经济调度[J]. 电网技术, 2021, 45 (2): 447- 461. | 
| CUI Yang, ZENG Peng, WANG Zheng, et al. Low-carbon economic dispatch of electricity-gas-heat integrated energy system with carbon capture equipment considering price-based demand response[J]. Power System Technology, 2021, 45 (2): 447- 461. | |
| 13 | XUE X Z, AI X M, FANG J K, et al. Real-time schedule of integrated heat and power system: a multi-dimensional stochastic approximate dynamic programming approach[J]. International Journal of Electrical Power & Energy Systems, 2022, 134: 107427. | 
| 14 | YANG H Z, LI M L, JIANG Z Y, et al. Multi-time scale optimal scheduling of regional integrated energy systems considering integrated demand response[J]. IEEE Access, 2020, 8: 5080–5090. | 
| 15 | SONG H, GU M C, LIU C, et al. Multi-objective battery energy storage optimization for virtual power plant applications[J]. Applied Energy, 2023, 352: 121860. | 
| 16 |  
											CHENG S, WANG R, XU J Y, et al. Multi-time scale coordinated optimization of an energy hub in the integrated energy system with multi-type energy storage systems[J]. Sustainable Energy Technologies and Assessments, 2021, 47, 101327. 
																							 DOI  | 
										
| 17 | 王智, 陶鸿俊, 蔡文奎, 等. 多时间尺度滚动优化在冷热电联供系统中的优化调度研究[J]. 太阳能学报, 2023, 44 (2): 298- 308. | 
| WANG Zhi, TAO Hongjun, CAI Wenkui, et al. Optimal scheduling research of multi-time-scale rolling optimization in CCHP system[J]. Acta Energiae Solaris Sinica, 2023, 44 (2): 298- 308. | |
| 18 | 何畅, 程杉, 徐建宇, 等. 基于多时间尺度和多源储能的综合能源系统能量协调优化调度[J]. 电力系统及其自动化学报, 2020, 32 (2): 77- 84, 97. | 
| HE Chang, CHENG Shan, XU Jianyu, et al. Coordinated optimal scheduling of integrated energy system considering multi-time scale and hybrid energy storage system[J]. Proceedings of the CSU-EPSA, 2020, 32 (2): 77- 84, 97. | |
| 19 | 孙强, 谢典, 聂青云, 等. 含电-热-冷-气负荷的园区综合能源系统经济优化调度研究[J]. 中国电力, 2020, 53 (4): 79- 88. | 
| SUN Qiang, XIE Dian, NIE Qingyun, et al. Research on economic optimization scheduling of park integrated energy system with electricity-heat-cool-gas load[J]. Electric Power, 2020, 53 (4): 79- 88. | |
| 20 |  
											戴毅茹, 王坚, 曾依浦. 考虑风光气电协同供能的冷热电联供系统多目标优化[J]. 同济大学学报(自然科学版), 2023, 51 (6): 963- 972. 
																							 DOI  | 
										
|  
											DAI Yiru, WANG Jian, ZENG Yipu. Multi-objective optimization of combined cooling heating and power system considering photovoltaic-wind-gas-power collaborative energy supply[J]. Journal of Tongji University (Natural Science), 2023, 51 (6): 963- 972. 
																							 DOI  | 
										|
| 21 | 高明非, 韩中合, 赵斌, 等. 区域综合能源系统多类型储能协同优化与运行策略[J/OL]. 中国电力, 2024: 1–12. (2024-02-29).https://kns.cnki.net/kcms/detail/11.3265.TM.20240228.1857.004.html. | 
| GAO Mingfei, HAN Zhonghe, ZHAO Bin, et al. Cooperative optimization and operational strategies for multi-type energy storage in regional integrated energy systems[J/OL]. Electric Power, 2024: 1–12. (2024-02-29).https://kns.cnki.net/kcms/detail/11.3265.TM.20240228.1857.004.html. | |
| 22 |  
											卫志农, 张思德, 孙国强, 等. 基于碳交易机制的电—气互联综合能源系统低碳经济运行[J]. 电力系统自动化, 2016, 40 (15): 9- 16. 
																							 DOI  | 
										
|  
											WEI Zhinong, ZHANG Side, SUN Guoqiang, et al. Carbon trading based low-carbon economic operation for integrated electricity and natural gas energy system[J]. Automation of Electric Power Systems, 2016, 40 (15): 9- 16. 
																							 DOI  | 
										|
| 23 | 苏志鹏, 王莉, 梁欣怡, 等. 考虑阶梯式碳交易及综合需求响应的虚拟电厂优化调度[J]. 中国电力, 2023, 56 (12): 174- 182. | 
| SU Zhipeng, WANG Li, LIANG Xinyi, et al. Optimal dispatch of virtual power plant considering stepped carbon trading and comprehensive demand response[J]. Electric Power, 2023, 56 (12): 174- 182. | |
| 24 | 邹宇航, 曾艾东, 郝思鹏, 等. 阶梯式碳交易机制下综合能源系统多时间尺度优化调度[J]. 电网技术, 2023, 47 (6): 2185- 2198. | 
| ZOU Yuhang, ZENG Aidong, HAO Sipeng, et al. Multi-time-scale optimal dispatch of integrated energy systems under stepped carbon trading mechanism[J]. Power System Technology, 2023, 47 (6): 2185- 2198. | |
| 25 | 张洪涛, 周意入, 凃玲英, 等. 计及绿证-碳交易与氢能的综合能源系统多时间尺度优化调度[J]. 电力系统及其自动化学报, 2023, 35 (11): 95- 106. | 
| ZHANG Hongtao, ZHOU Yiru, TU Lingying, et al. Multi-timescale optimal scheduling of integrated energy system with consideration of green certificate-carbon trading and hydrogen energy[J]. Proceedings of the CSU-EPSA, 2023, 35 (11): 95- 106. | 
| Viewed | ||||||
| 
										Full text | 
									
										 | 
								|||||
| 
										Abstract | 
									
										 | 
								|||||
