Electric Power ›› 2025, Vol. 58 ›› Issue (5): 82-90.DOI: 10.11930/j.issn.1004-9649.202408035
• New Energy and Energy Storage • Previous Articles Next Articles
CHEN Minghongtian1(), GENG Jianghai1(
), ZHAO Yuze1, XU Peng2, HAN Yushan3, ZHANG Yuming1, ZHANG Zimo1
Received:
2024-08-12
Online:
2025-05-30
Published:
2025-05-28
Supported by:
CHEN Minghongtian, GENG Jianghai, ZHAO Yuze, XU Peng, HAN Yushan, ZHANG Yuming, ZHANG Zimo. Two-Stage Stochastic Optimization Based Weekly Operation Strategy for Electric-Hydrogen Coupled Microgrid[J]. Electric Power, 2025, 58(5): 82-90.
参数 | 取值 | 参数 | 取值 | |||
电解槽容量/kW | 600 | 储氢罐SOC初始值 | 0.2 | |||
电解槽效率/% | 70 | 储氢罐SOC上、下限 | 0.9、0.1 | |||
燃料电池容量/kW | 500 | 蓄电池容量/(kW·h) | 300 | |||
燃料电池效率/% | 60 | 蓄电池充、放效率/% | 95、95 | |||
储氢罐容量/kg | 250 | 蓄电池SOC初始值 | 0.3 | |||
储氢罐充、放效率/% | 97、97 | 蓄电池SOC上、下限 | 0.9、0.1 |
Table 1 Equipment parameters
参数 | 取值 | 参数 | 取值 | |||
电解槽容量/kW | 600 | 储氢罐SOC初始值 | 0.2 | |||
电解槽效率/% | 70 | 储氢罐SOC上、下限 | 0.9、0.1 | |||
燃料电池容量/kW | 500 | 蓄电池容量/(kW·h) | 300 | |||
燃料电池效率/% | 60 | 蓄电池充、放效率/% | 95、95 | |||
储氢罐容量/kg | 250 | 蓄电池SOC初始值 | 0.3 | |||
储氢罐充、放效率/% | 97、97 | 蓄电池SOC上、下限 | 0.9、0.1 |
时段 | 电价/ (元·(kW·h)–1) | 弃风惩罚系数/ (元·(kW·h)–1) | ||
01:00—07:00、22:00—24:00 | 0.38 | 0.4 | ||
07:00—11:00、14:00—18:00 | 0.68 | 0.4 | ||
11:00—14:00、18:00—22:00 | 1.20 | 0.4 |
Table 2 Cost parameters
时段 | 电价/ (元·(kW·h)–1) | 弃风惩罚系数/ (元·(kW·h)–1) | ||
01:00—07:00、22:00—24:00 | 0.38 | 0.4 | ||
07:00—11:00、14:00—18:00 | 0.68 | 0.4 | ||
11:00—14:00、18:00—22:00 | 1.20 | 0.4 |
场景 | 概率/% | |
1 | 35.7 | |
2 | 31.6 | |
3 | 32.7 |
Table 3 Probabilities of typical wind power prediction error scenarios
场景 | 概率/% | |
1 | 35.7 | |
2 | 31.6 | |
3 | 32.7 |
运行策略 | 总成本/ 元 | 购电量/ (kW·h) | 风电消纳 量/(kW·h) | 能量利 用率/% | 制氢量/ kg | |||||
1 | 12 593 | 24 576 | 39 544 | 83.79 | 821.84 | |||||
2 | 11 874 | 22 466 | 39 553 | 86.63 | 676.49 |
Table 4 Comparison of results between different strategies
运行策略 | 总成本/ 元 | 购电量/ (kW·h) | 风电消纳 量/(kW·h) | 能量利 用率/% | 制氢量/ kg | |||||
1 | 12 593 | 24 576 | 39 544 | 83.79 | 821.84 | |||||
2 | 11 874 | 22 466 | 39 553 | 86.63 | 676.49 |
运行策略 | 总成本/ 元 | 购电量/ (kW·h) | 风电消纳 量/(kW·h) | 能量利用 率/% | 制氢量/ kg | |||||
2 | 11 874 | 22 466 | 39 553 | 86.63 | 676.49 | |||||
3 | 12 203 | 23 026 | 39 567 | 85.84 | 715.54 |
Table 5 Comparison of results between strategy 2 and strategy 3
运行策略 | 总成本/ 元 | 购电量/ (kW·h) | 风电消纳 量/(kW·h) | 能量利用 率/% | 制氢量/ kg | |||||
2 | 11 874 | 22 466 | 39 553 | 86.63 | 676.49 | |||||
3 | 12 203 | 23 026 | 39 567 | 85.84 | 715.54 |
1 | 张智刚, 康重庆. 碳中和目标下构建新型电力系统的挑战与展望[J]. 中国电机工程学报, 2022, 42 (8): 2806- 2819. |
ZHANG Zhigang, KANG Chongqing. Challenges and prospects for constructing the new-type power system towards a carbon neutrality future[J]. Proceedings of the CSEE, 2022, 42 (8): 2806- 2819. | |
2 | 刘映尚, 马骞, 王子强, 等. 新型电力系统电力电量平衡调度问题的思考[J]. 中国电机工程学报, 2023, 43 (5): 1694- 1705. |
LIU Yingshang, MA Qian, WANG Ziqiang, et al. Cogitation on power and electricity balance dispatching in new power system[J]. Proceedings of the CSEE, 2023, 43 (5): 1694- 1705. | |
3 | 杨胜, 樊艳芳, 侯俊杰, 等. 考虑平抑风光波动的ALK-PEM电解制氢系统容量优化模型[J]. 电力系统保护与控制, 2024, 52 (1): 85- 96. |
YANG Sheng, FAN Yanfang, HOU Junjie, et al. Capacity optimization model for an ALK-PEM electrolytic hydrogen production system considering the stabilization of wind and PV fluctuations[J]. Power System Protection and Control, 2024, 52 (1): 85- 96. | |
4 | 李建林, 梁策, 曾飞, 等. 基于级联式模糊控制的电氢耦合直流微网能量管理策略研究[J]. 电力系统保护与控制, 2024, 52 (18): 87- 100. |
LI Jianlin, LIANG Ce, ZENG Fei, et al. An energy management strategy for an electricity-hydrogen coupled DC microgridbased on cascade fuzzy control[J]. Power System Protection and Control, 2024, 52 (18): 87- 100. | |
5 | ZHANG K, ZHOU B, OR S W, et al. Optimal coordinated control of multi-renewable-to-hydrogen production system for hydrogen fueling stations[J]. IEEE Transactions on Industry Applications, 2021, 58 (2): 2728- 2739. |
6 | 李志伟, 赵雨泽, 吴培, 等. 基于制氢设备精细建模的综合能源系统绿氢蓝氢协调低碳优化策略[J]. 电网技术, 2024, 48 (6): 2317- 2326. |
LI Zhiwei, ZHAO Yuze, WU Pei, et al. Coordinated low-carbon optimization strategy for green and blue hydrogen in integrated energy systems based on detailed modeling of hydrogen production equipment[J]. Power System Technology, 2024, 48 (6): 2317- 2326. | |
7 | ZHONG Z Y, FANG J K, HU K W, et al. Power-to-hydrogen by electrolysis in carbon neutrality: technology overview and future development[J]. CSEE Journal of Power and Energy Systems, 2023, 9 (4): 1266- 1283. |
8 | 李江南, 程韧俐, 周保荣, 等. 含碳捕集及电转氢设备的低碳园区综合能源系统随机优化调度[J]. 中国电力, 2024, 57 (5): 149- 156. |
LI Jiangnan, CHENG Renli, ZHOU Baorong, et al. Stochastic optimization scheduling of low-carbon park integrated energy systems with carbon capture and power-to-hydrogen equipment[J]. Electric Power, 2024, 57 (5): 149- 156. | |
9 | 杨国山, 朱杰, 宋汶秦, 等. 基于伊藤过程的电制氢合成氨负荷随机最优控制[J]. 中国电力, 2023, 56 (7): 66- 77. |
YANG Guoshan, ZHU Jie, SONG Wenqin, et al. Flexible load stochastic optimal control of wind power-based hydrogen production and ammonia synthesis systems based on the it? process[J]. Electric Power, 2023, 56 (7): 66- 77. | |
10 | 王西胜, 刘辉, 刘迪, 等. 电网友好型风电场多功能电——氢混合储能系统容量配置[J]. 电力科学与技术学报, 2024, 39 (5): 141- 150. |
WANG Xisheng, LIU Hui, LIU Di, et al. Power System Protection and Control[J]. Journal of Electric Power Science and Technology, 2024, 39 (5): 141- 150. | |
11 | 刘继春, 周春燕, 高红均, 等. 考虑氢能-天然气混合储能的电-气综合能源微网日前经济调度优化[J]. 电网技术, 2018, 42 (1): 170- 179. |
LIU Jichun, ZHOU Chunyan, GAO Hongjun, et al. A day-ahead economic dispatch optimization model of integrated electricity-natural gas system considering hydrogen-gas energy storage system in microgrid[J]. Power System Technology, 2018, 42 (1): 170- 179. | |
12 | 熊宇峰, 陈来军, 郑天文, 等. 考虑电热气耦合特性的低碳园区综合能源系统氢储能优化配置[J]. 电力自动化设备, 2021, 41 (9): 31- 38. |
XIONG Yufeng, CHEN Laijun, ZHENG Tianwen, et al. Optimal configuration of hydrogen energy storage in low-carbon park integrated energy system considering electricity-heat-gas coupling characteristics[J]. Electric Power Automation Equipment, 2021, 41 (9): 31- 38. | |
13 | 师瑞峰, 宁津, 高毓钦, 等. 含氢储能的公路交通风、光自洽微网系统优化调度策略研究[J]. 太阳能学报, 2023, 44 (11): 513- 521. |
SHI Ruifeng, NING Jin, GAO Yuqin, et al. Research on optimal dispatch strategy of wind and solar self-consistent microgrid in road transportation system with hydrogen energy storage[J]. Acta Energiae Solaris Sinica, 2023, 44 (11): 513- 521. | |
14 |
LI Z C, XIA Y H, BO Y L, et al. Optimal planning for electricity-hydrogen integrated energy system considering multiple timescale operations and representative time-period selection[J]. Applied Energy, 2024, 362, 122965.
DOI |
15 |
WANG H F, YUAN L L, WANG W J, et al. Distributionally robust optimization for pumped storage power station capacity expanding based on underwater hydrogen storage introduction[J]. Energy, 2024, 310, 133254.
DOI |
16 |
赵波, 王文博, 陈哲, 等. 计及长短周期混合储能的多能微网能量-功率分布鲁棒优化[J]. 电力系统自动化, 2023, 47 (16): 22- 33.
DOI |
ZHAO Bo, WANG Wenbo, CHEN Zhe, et al. Energy-power distributionally robust optimization for multi-energy microgrid considering long short-term hybrid energy storage[J]. Automation of Electric Power Systems, 2023, 47 (16): 22- 33.
DOI |
|
17 | 赵书强, 赵蓬飞, 韦子瑜, 等. 数据驱动下考虑多预测误差带信息的多场景随机优化调度[J]. 电力自动化设备, 2024, 44 (11): 52- 59. |
ZHAO Shuqiang, ZHAO Pengfei, WEI Ziyu, et al. Multi-scenario stochastic optimal scheduling considering multi-prediction error band information under data-driven[J]. Electric Power Automation Equipment, 2024, 44 (11): 52- 59. | |
18 | 涂青宇, 苗世洪, 杨志豪, 等. 一种考虑峰荷-电量分摊机制和风电关键场景的输-配电网协同调度策略[J]. 中国电机工程学报, 2024, 44 (2): 597- 610. |
TU Qingyu, MIAO Shihong, YANG Zhihao, et al. A collaborative scheduling strategy for transmission-distribution systems considering peak load-electricity quantity allocation mechanism and key wind power scenarios[J]. Proceedings of the CSEE, 2024, 44 (2): 597- 610. | |
19 | 鲍海波, 郭小璇. 求解含风电相关性区间潮流的仿射变换最优场景法[J]. 电力系统保护与控制, 2020, 48 (18): 114- 122. |
BAO Haibo, GUO Xiaoxuan. Optimal scenario algorithm based on affine transformation applied to interval power flow considering correlated wind power[J]. Power System Protection and Control, 2020, 48 (18): 114- 122. | |
20 | 谢敏, 罗文豪, 吉祥, 等. 随机风电接入的电力系统动态经济调度多场景协同优化[J]. 电力自动化设备, 2019, 39 (11): 27- 33. |
XIE Min, LUO Wenhao, JI Xiang, et al. Multi-scenario collaborative optimization for dynamic economic dispatch of power system with stochastic wind power integration[J]. Electric Power Automation Equipment, 2019, 39 (11): 27- 33. | |
21 |
彭春华, 熊志盛, 张艺, 等. 基于多场景置信间隙决策的风光储联合鲁棒规划[J]. 电力系统自动化, 2022, 46 (16): 178- 187.
DOI |
PENG Chunhua, XIONG Zhisheng, ZHANG Yi, et al. Joint robust planning of wind-photovoltaic-energy storage system based on multi-scenario confidence gap decision[J]. Automation of Electric Power Systems, 2022, 46 (16): 178- 187.
DOI |
|
22 | 赵波, 林达, 陈哲, 等. 面向新能源消纳的长短周期混合储能关键技术及展望[J]. 新型电力系统, 2024, (2): 162- 178. |
ZHAO Bo, LIN Da, CHEN Zhe, et al. Key technologies and prospects of long-short-cycle hybrid energy storage for renewable energy consumption[J]. New Type Power Systems, 2024, (2): 162- 178. | |
23 |
张强, 王禹霖, 张茜. 基于剩余容量匹配的储能装置负荷分配控制技术[J]. 电力系统自动化, 2020, 44 (24): 126- 133.
DOI |
ZHANG Qiang, WANG Yulin, ZHANG Qiang. Load distribution control technology for energy storage device based on residual capacity matching[J]. Automation of Electric Power Systems, 2020, 44 (24): 126- 133.
DOI |
|
24 | 付文杰, 王喻玺, 申洪涛, 等. 基于拉丁超立方抽样和场景消减的居民用户基线负荷估计方法[J]. 电网技术, 2022, 46 (6): 2298- 2307. |
FU Wenjie, WANG Yuxi, SHEN Hongtao, et al. Residential customer baseline load estimation based on Latin hypercube sampling and scenario subtraction[J]. Power System Technology, 2022, 46 (6): 2298- 2307. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||