Electric Power ›› 2024, Vol. 57 ›› Issue (8): 1-11.DOI: 10.11930/j.issn.1004-9649.202312101
• Power System Flexibility Improvement Technology Based on Hydrogen Energy • Previous Articles Next Articles
Xing FENG(), Wei YANG(
), Anan ZHANG, Xi ZHANG, Qian LI, Xianzhang LEI
Received:
2023-12-28
Accepted:
2024-03-27
Online:
2024-08-23
Published:
2024-08-28
Supported by:
Xing FENG, Wei YANG, Anan ZHANG, Xi ZHANG, Qian LI, Xianzhang LEI. Capacity Optimization Configuration of a Bidirectional Reversible Centralized Electrohydrogen Coupling System[J]. Electric Power, 2024, 57(8): 1-11.
最大 速度 | 粒子 数目 | 学习 因子 | 惯性 权重 | 最大 迭代 次数 | SOFC 热 效率 | SOFC 电 效率 | SOEC 耗热 系数 | 储氢 装置 充放 效率 | 固定 资产 残值 率/% | 风机 光伏 寿命/ 年 | ||||||||||
10 | 20 | 1.5、2 | 0.4~0.9 | 40 | 0.25 | 0.56 | 0.4 | 0.98 | 5 | 20 |
Table 1 Algorithm related parameters
最大 速度 | 粒子 数目 | 学习 因子 | 惯性 权重 | 最大 迭代 次数 | SOFC 热 效率 | SOFC 电 效率 | SOEC 耗热 系数 | 储氢 装置 充放 效率 | 固定 资产 残值 率/% | 风机 光伏 寿命/ 年 | ||||||||||
10 | 20 | 1.5、2 | 0.4~0.9 | 40 | 0.25 | 0.56 | 0.4 | 0.98 | 5 | 20 |
RSOC 投资成本/ (元·kW–1) | 储氢库 投资成本/ (元·kg–1) | 设备运行 维护成本/ (元·(kW·h)–1) | 氢气储存 成本/ (元·(Nm3)–1) | 运输成本/(元·(Nm3)–1) | 氢气售 卖价格/ (元·(Nm3)–1) | 氢制电增发 电量收益/ (元·(kW·h)–1) | 余热利用 收益/ (元·(kW·h)–1) | 特高压输电 通道利用收益/ (元·(kW·h)–1) | ||||||||
0.04~0.16 | 1~1.9 | 1.2~1.5(液),1.145~2.1(气) | 3.5~5 | 0.14~0.22 | 0.25~0.4 | 0.02~0.12 |
Table 2 Prices of main links
RSOC 投资成本/ (元·kW–1) | 储氢库 投资成本/ (元·kg–1) | 设备运行 维护成本/ (元·(kW·h)–1) | 氢气储存 成本/ (元·(Nm3)–1) | 运输成本/(元·(Nm3)–1) | 氢气售 卖价格/ (元·(Nm3)–1) | 氢制电增发 电量收益/ (元·(kW·h)–1) | 余热利用 收益/ (元·(kW·h)–1) | 特高压输电 通道利用收益/ (元·(kW·h)–1) | ||||||||
0.04~0.16 | 1~1.9 | 1.2~1.5(液),1.145~2.1(气) | 3.5~5 | 0.14~0.22 | 0.25~0.4 | 0.02~0.12 |
方 案 | 蓄电 池/ MW | 电解 槽/ MW | RSOC/ MW | 储氢 库/t | 投资成 本/万元 | 弃风弃光量/ ((MW·h)·年–1) | 运营 周期/ 年 | 投资 回收 期/年 | ||||||||
1 | 11.3 | 0 | 0 | 0 | 4.0 | 0 | ||||||||||
2 | 0 | 12.8 | 0 | 6.4 | 8.0 | 7.2 | ||||||||||
3 | 0 | 0 | 12.2 | 5.1 | 8.8 | 7.6 | ||||||||||
4 | 0 | 0 | 14.6 | 6.2 | 0.0 | 9.1 | 7.9 |
Table 3 Comparison of parameters of four schemes
方 案 | 蓄电 池/ MW | 电解 槽/ MW | RSOC/ MW | 储氢 库/t | 投资成 本/万元 | 弃风弃光量/ ((MW·h)·年–1) | 运营 周期/ 年 | 投资 回收 期/年 | ||||||||
1 | 11.3 | 0 | 0 | 0 | 4.0 | 0 | ||||||||||
2 | 0 | 12.8 | 0 | 6.4 | 8.0 | 7.2 | ||||||||||
3 | 0 | 0 | 12.2 | 5.1 | 8.8 | 7.6 | ||||||||||
4 | 0 | 0 | 14.6 | 6.2 | 0.0 | 9.1 | 7.9 |
总外送电量/ (MW·h) | 氢产量/t | 污染物减 排量/t | 余热回收量/ (MW·h) | |||
523.7 |
Table 4 Key annual operating volumes of the system
总外送电量/ (MW·h) | 氢产量/t | 污染物减 排量/t | 余热回收量/ (MW·h) | |||
523.7 |
1 |
周强, 汪宁渤, 冉亮, 等. 中国新能源弃风弃光原因分析及前景探究[J]. 中国电力, 2016, 49 (9): 7- 12, 159.
DOI |
ZHOU Qiang, WANG Ningbo, RAN Liang, et al. Cause analysis on wind and photovoltaic energy curtailment and prospect research in China[J]. Electric Power, 2016, 49 (9): 7- 12, 159.
DOI |
|
2 | LIN X, LIU W F, HE J M, et al. Research on medium and long-term new energy consumption in Shanxi Province[C]//2021 6th Asia Conference on Power and Electrical Engineering (ACPEE). Chongqing, China. IEEE, 2021: 1700–1704. |
3 | 刘联涛, 刘飞, 吉平, 等. 储能参与新能源消纳的优化控制策略[J]. 中国电力, 2023, 56 (3): 137- 143. |
LIU Liantao, LIU Fei, JI Ping, et al. Research on optimal control strategy of energy storage for improving new energy consumption[J]. Electric Power, 2023, 56 (3): 137- 143. | |
4 |
LIU J Z, WANG Q H, SONG Z Q, et al. Bottlenecks and countermeasures of high-penetration renewable energy development in China[J]. Engineering, 2021, 7 (11): 1611- 1622.
DOI |
5 |
姜海洋, 杜尔顺, 朱桂萍, 等. 面向高比例可再生能源电力系统的季节性储能综述与展望[J]. 电力系统自动化, 2020, 44 (19): 194- 207.
DOI |
JIANG Haiyang, DU Ershun, ZHU Guiping, et al. Review and prospect of seasonal energy storage for power system with high proportion of renewable energy[J]. Automation of Electric Power Systems, 2020, 44 (19): 194- 207.
DOI |
|
6 | 徐国栋, 程浩忠, 马紫峰, 等. 用于缓解电网调峰压力的储能系统规划方法综述[J]. 电力自动化设备, 2017, 37 (8): 3- 11. |
XU Guodong, CHENG Haozhong, MA Zifeng, et al. Overview of ESS planning methods for alleviating peak-shaving pressure of grid[J]. Electric Power Automation Equipment, 2017, 37 (8): 3- 11. | |
7 |
潘光胜, 顾伟, 张会岩, 等. 面向高比例可再生能源消纳的电氢能源系统[J]. 电力系统自动化, 2020, 44 (23): 1- 10.
DOI |
PAN Guangsheng, GU Wei, ZHANG Huiyan, et al. Electricity and hydrogen energy system towards accomodation of high proportion of renewable energy[J]. Automation of Electric Power Systems, 2020, 44 (23): 1- 10.
DOI |
|
8 | 熊宇峰, 陈来军, 郑天文, 等. 考虑电热气耦合特性的低碳园区综合能源系统氢储能优化配置[J]. 电力自动化设备, 2021, 41 (9): 31- 38. |
XIONG Yufeng, CHEN Laijun, ZHENG Tianwen, et al. Optimal configuration of hydrogen energy storage in low-carbon park integrated energy system considering electricity-heat-gas coupling characteristics[J]. Electric Power Automation Equipment, 2021, 41 (9): 31- 38. | |
9 | 李笑竹, 陈来军, 殷骏, 等. 面向低碳供能的多园区共享氢储能系统容量规划[J]. 高电压技术, 2022, 48 (7): 2534- 2544. |
LI Xiaozhu, CHEN Laijun, YIN Jun, et al. Capacity planning of multiple parks shared hydrogen energy storage system for low-carbon energy supply[J]. High Voltage Engineering, 2022, 48 (7): 2534- 2544. | |
10 | 司杨, 陈来军, 陈晓弢, 等. 基于分布鲁棒的风-氢混合系统氢储能容量优化配置[J]. 电力自动化设备, 2021, 41 (10): 3- 10. |
SI Yang, CHEN Laijun, CHEN Xiaotao, et al. Optimal capacity allocation of hydrogen energy storage in wind-hydrogen hybrid system based on distributionally robust[J]. Electric Power Automation Equipment, 2021, 41 (10): 3- 10. | |
11 | 孙雯, 陈紫薇, 张玉琼, 等. 基于动态规划的SOFC冷热电三联供综合能源系统日前经济调度[J]. 中国电机工程学报, 2022, 42 (21): 7775- 7783. |
SUN Wen, CHEN Ziwei, ZHANG Yuqiong, et al. Economic day-ahead scheduling of SOFC-based integrated tri-generation energy system using dynamic programming[J]. Proceedings of the CSEE, 2022, 42 (21): 7775- 7783. | |
12 | 李远征, 任潇, 葛磊蛟, 等. 基于可逆固体氧化物电池的电氢耦合微电网全生命周期规划-运营研究[J]. 中国电机工程学报, 2024, 44 (13): 5169- 5185. |
LI Yuanzheng, REN Xiao, GE Leijiao, et al. Research for entire lifecycle planning-operation of electric-hydrogen coupled microgrid based on reversible solid oxide cell[J]. Proceedings of the CSEE, 2024, 44 (13): 5169- 5185. | |
13 |
BUFFO G, FERRERO D, SANTARELLI M, et al. Energy and environmental analysis of a flexible Power-to-X plant based on reversible solid oxide cells (rSOCs) for an urban district[J]. Journal of Energy Storage, 2020, 29, 101314.
DOI |
14 | GDF A, EGM B, LM C, et al. Comparative life cycle assessment of two different SOFC-based cogeneration systems with thermal energy storage integrated into a single-family house nanogrid[J]. Applied Energy, 285: 1-20. |
15 | 范宏, 邢梦晴, 王兰坤, 等. 考虑氢储的风光氢综合能源系统多时间尺度随机生产模拟[J]. 上海交通大学学报, 2024, 58 (6): 881- 892. |
FAN Hong, XING Mengqing, WANG Lankun, et al. Multi-time scale probabilistic production simulation of wind-solar hydrogen integrated energy system considering hydrogen storage[J]. Journal of Shanghai Jiaotong University, 2024, 58 (6): 881- 892. | |
16 | 邱高, 刘俊勇, 刘友波, 等. 风电外送通道极限传输能力的自适应向量机估计[J]. 电工技术学报, 2018, 33 (14): 3342- 3352. |
QIU Gao, LIU Junyong, LIU Youbo, et al. Adaptive support vector machine estimation for total transfer capability of wind power exporting corridors[J]. Transactions of China Electrotechnical Society, 2018, 33 (14): 3342- 3352. | |
17 | 高赐威, 王崴, 陈涛. 基于可逆固体氧化物电池的电氢一体化能源站容量规划[J]. 中国电机工程学报, 2022, 42 (17): 6155- 6169. |
GAO Ciwei, WANG Wei, CHEN Tao. Capacity planning of electric-hydrogen integrated energy station based on reversible solid oxide battery[J]. Proceedings of the CSEE, 2022, 42 (17): 6155- 6169. | |
18 |
GIAP V T, KIM Y S, LEE Y D, et al. Waste heat utilization in reversible solid oxide fuel cell systems for electrical energy storage: fuel recirculation design and feasibility analysis[J]. Journal of Energy Storage, 2020, 29, 101434.
DOI |
19 | NAEINI M, LAI H X, COTTON J S, et al. A mathematical model for prediction of long-term degradation effects in solid oxide fuel cells[J]. Industrial & Engineering Chemistry Research, 2021, 60 (3): 1326- 1340. |
20 |
HAGEN A K, BARFOD R, HENDRIKSEN P V, et al. Degradation of anode supported SOFCs as a function of temperature and current load[J]. Journal of the Electrochemical Society, 2006, 153 (6): A1165.
DOI |
21 |
CHEN Y R, WANG M, LISO V, et al. Parametric analysis and optimization for exergoeconomic performance of a combined system based on solid oxide fuel cell-gas turbine and supercritical carbon dioxide Brayton cycle[J]. Energy Conversion and Management, 2019, 186, 66- 81.
DOI |
22 | 崔杨, 李崇钢, 张节潭, 等. 考虑直流通道灵活性的含光热电站系统供热期协调调度方法[J]. 高电压技术, 2022, 48 (6): 2054- 2064. |
CUI Yang, LI Chonggang, ZHANG Jietan, et al. Coordinated scheduling method in heating season of concentrating solar power system considering flexibility of HVDC tieline[J]. High Voltage Engineering, 2022, 48 (6): 2054- 2064. | |
23 | 曾鸣, 刘英新, 周鹏程, 等. 综合能源系统建模及效益评价体系综述与展望[J]. 电网技术, 2018, 42 (6): 1697- 1708. |
ZENG Ming, LIU Yingxin, ZHOU Pengcheng, et al. Review and prospects of integrated energy system modeling and benefit evaluation[J]. Power System Technology, 2018, 42 (6): 1697- 1708. | |
24 |
NUGGEHALLI SAMPATHKUMAR S, AUBIN P, COUTURIER K, et al. Degradation study of a reversible solid oxide cell (rSOC) short stack using distribution of relaxation times (DRT) analysis[J]. International Journal of Hydrogen Energy, 2022, 47 (18): 10175- 10193.
DOI |
25 | 国家能源局. 2019年前三季度风电并网运行情况[R]. 北京. 2019. |
26 | CHU W J, ZHANG Y J. The efficiency and economic feasibility study on wind-hydrogen system[C]//2020 IEEE Sustainable Power and Energy Conference (iSPEC). Chengdu, China. IEEE, 2020: 18–35. |
27 | 国家能源局. “风光储输”示范工程: 打造新能源领域的“中国标准”[R]. 北京. 2013. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 101
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 83
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||