Electric Power ›› 2024, Vol. 57 ›› Issue (5): 61-69.DOI: 10.11930/j.issn.1004-9649.202306066
• Flexible Resource Operation and Key Technologies of New Power System Source Network Load Storage • Previous Articles Next Articles
Hang LIU1(
), Hao SHEN1, Yong YANG1, Ling JI2, Yang YU3(
)
Received:2023-06-19
Accepted:2023-09-17
Online:2024-05-23
Published:2024-05-28
Supported by:Hang LIU, Hao SHEN, Yong YANG, Ling JI, Yang YU. Load Forecast of Electric Trucks Aggregation Based on Higher-order Markov Chains[J]. Electric Power, 2024, 57(5): 61-69.
| 道路等级 | c1 | c2 | c3 | c4 | p1 | p2 | p3 | p4 | ||||||||
| 快速 | 0.9526 | 1 | 3 | 3 | 0.0405 | 500 | 3 | 3 | ||||||||
| 普通 | 0.9526 | 1 | 2 | 2 | 0.0405 | 500 | 2 | 2 |
Table 1 The adaptive coefficients involved in the road topology map
| 道路等级 | c1 | c2 | c3 | c4 | p1 | p2 | p3 | p4 | ||||||||
| 快速 | 0.9526 | 1 | 3 | 3 | 0.0405 | 500 | 3 | 3 | ||||||||
| 普通 | 0.9526 | 1 | 2 | 2 | 0.0405 | 500 | 2 | 2 |
| 参数名称 | 参数值 | |
| ET电池容量/(kW·h) | 300 | |
| 计划充放电功率/kW | 200 | |
| 充放电效率/% | 94 |
Table 2 Parameter Setting
| 参数名称 | 参数值 | |
| ET电池容量/(kW·h) | 300 | |
| 计划充放电功率/kW | 200 | |
| 充放电效率/% | 94 |
| 1 | 彭云, 李相达, 王文渊, 等. 绿色集装箱港口节能减排策略综述[J]. 交通运输工程学报, 2022, 22 (4): 28- 46. |
| PENG Yun, LI Xiangda, WANG Wenyuan, et al. Review on energy saving and emission reduction strategies of green container ports[J]. Journal of Traffic and Transportation Engineering, 2022, 22 (4): 28- 46. | |
| 2 |
DUAN X Y, HU Z C, SONG Y H. Bidding strategies in energy and reserve markets for an aggregator of multiple EV fast charging stations with battery storage[J]. IEEE Transactions on Intelligent Transportation Systems, 2021, 22 (1): 471- 482.
|
| 3 |
LOPEZ K L, GAGNE C, GARDNER M A. Demand-side management using deep learning for smart charging of electric vehicles[J]. IEEE Transactions on Smart Grid, 2019, 10 (3): 2683- 2691.
|
| 4 | 文家燕, 闻海潮, 程洋, 等. 基于GWO-NSGA-Ⅱ混合算法的露天矿低碳运输调度[J]. 工矿自动化, 2023, 49 (2): 94- 101. |
| WEN Jiayan, WEN Haichao, CHENG Yang, et al. Low-carbon transportation scheduling of open-pit mine based on GWO-NSGA-Ⅱ hybrid algorithm[J]. Journal of Mine Automation, 2023, 49 (2): 94- 101. | |
| 5 | 陈蓉珺, 何永秀, 陈奋开, 等. 基于系统动力学和蒙特卡洛模拟的电动汽车日负荷远期预测[J]. 中国电力, 2018, 51 (9): 126- 134. |
| CHEN Rongjun, HE Yongxiu, CHEN Fenkai, et al. Long-term daily load forecast of electric vehicle based on system dynamics and Monte Carlo simulation[J]. Electric Power, 2018, 51 (9): 126- 134. | |
| 6 | 余军伟, 孙云莲, 张笑迪. 考虑发展不均衡的电动汽车充电负荷预测[J]. 电测与仪表, 2019, 56 (5): 43- 50. |
| YU Junwei, SUN Yunlian, ZHANG Xiaodi. Charging load forecasting considering the unbalanced development of EV[J]. Electrical Measurement & Instrumentation, 2019, 56 (5): 43- 50. | |
| 7 | 赵书强, 周靖仁, 李志伟, 等. 基于出行链理论的电动汽车充电需求分析方法[J]. 电力自动化设备, 2017, 37 (8): 105- 112. |
| ZHAO Shuqiang, ZHOU Jingren, LI Zhiwei, et al. EV charging demand analysis based on trip chain theory[J]. Electric Power Automation Equipment, 2017, 37 (8): 105- 112. | |
| 8 | 锁军, 李龙, 贺瀚青, 等. 考虑交通路况的电动汽车充电负荷预测[J]. 电网与清洁能源, 2022, 38 (10): 141- 147. |
| SUO Jun, LI Long, HE Hanqing, et al. Load forecasting of electric vehicle charging considering traffic conditions[J]. Power System and Clean Energy, 2022, 38 (10): 141- 147. | |
| 9 | 蒋怡静, 于艾清, 黄敏丽. 考虑用户满意度的电动汽车时空双尺度有序充电引导策略[J]. 中国电力, 2020, 53 (4): 122- 130. |
| JIANG Yijing, YU Aiqing, HUANG Minli. Coordinated charging guiding strategy for electric vehicles in temporalspatial dimension considering user satisfaction degree[J]. Electric Power, 2020, 53 (4): 122- 130. | |
| 10 | 刘志强, 张谦, 朱熠, 等. 计及车-路-站-网融合的电动汽车充电负荷时空分布预测[J]. 电力系统自动化, 2022, 46 (12): 36- 45. |
| LIU Zhiqiang, ZHANG Qian, ZHU Yi, et al. Spatial-temporal distribution prediction of charging loads for electric vehicles considering vehicle-road-station-grid integration[J]. Automation of Electric Power Systems, 2022, 46 (12): 36- 45. | |
| 11 |
PERTL M, CARDUCCI F, TABONE M, et al. An equivalent time-variant storage model to harness EV flexibility: forecast and aggregation[J]. IEEE Transactions on Industrial Informatics, 2019, 15 (4): 1899- 1910.
|
| 12 |
JIN Y W, YU B, SEO M, et al. Optimal aggregation design for massive V2G participation in energy market[J]. IEEE Access, 2020, 8, 211794- 211808.
|
| 13 |
DABBAGHJAMANESH M, MOEINI A, KAVOUSI-FARD A. Reinforcement learning-based load forecasting of electric vehicle charging station using Q-learning technique[J]. IEEE Transactions on Industrial Informatics, 2021, 17 (6): 4229- 4237.
|
| 14 |
ZHANG X, CHAN K W, LI H, et al. Deep-learning-based probabilistic forecasting of electric vehicle charging load with a novel queuing model[J]. IEEE Trans Cybern, 2021, 51 (6): 3157- 3170.
|
| 15 | 郄朝辉, 李威, 崔晓丹, 等. 基于分层马尔可夫的可修复稳定控制系统可靠性分析[J]. 中国电力, 2020, 53 (3): 101- 109. |
| QIE Zhaohui, LI Wei, CUI Xiaodan, et al. Reliability analysis of repairable stability control system based on hierarchical Markov[J]. Electric Power, 2020, 53 (3): 101- 109. | |
| 16 |
ZHANG Q, CHEN X, LIAO S Y. Energy management control strategy for hybrid energy storage systems in electric vehicles[J]. International Journal of Electrochemical Science, 2022, 17 (1): 220121.
|
| 17 |
KIANI S, SHESHYEKANI K, DAGDOUGUI H. An extended state space model for aggregation of large-scale EVs considering fast charging[J]. IEEE Transactions on Transportation Electrification, 2023, 9 (1): 1238- 1251.
|
| 18 |
LIN X Y, ZHANG G J, WEI S S. Velocity prediction using Markov Chain combined with driving pattern recognition and applied to Dual-Motor Electric Vehicle energy consumption evaluation[J]. Applied Soft Computing, 2021, 101, 106998.
|
| 19 |
ALJOHANI TAWFIQ M, AHMED E, OSAMA M. Real-Time metadata-driven routing optimization for electric vehicle energy consumption minimization using deep reinforcement learning and Markov chain model[J]. Electric Power Systems Research, 2021, 192, 106962.
|
| 20 |
SHEN H R, WANG Z J, ZHOU X Y, et al. Electric vehicle velocity and energy consumption predictions using transformer and markov-chain Monte Carlo[J]. IEEE Transactions on Transportation Electrification, 2022, 8 (3): 3836- 3847.
|
| 21 |
DING T, ZENG Z Y, BAI J W, et al. Optimal electric vehicle charging strategy with Markov decision process and reinforcement learning technique[J]. IEEE Transactions on Industry Applications, 2020, 56 (5): 5811- 5823.
|
| 22 | 董锴, 蔡新雷, 崔艳林, 等. 基于马尔科夫链的电动汽车聚合建模及多模式调频控制策略[J]. 电网技术, 2022, 46 (2): 622- 634. |
| DONG Kai, CAI Xinlei, CUI Yanlin, et al. Aggregation modeling based on Markov chain and multi-mode control strategies of aggregated electric vehicles for frequency regulation[J]. Power System Technology, 2022, 46 (2): 622- 634. |
| [1] | LUO Chao, NI Tian, CHEN Lingyun, KANG Yi, HOU Hui, WU Xixiu. Panoramic Optimal Prediction of Load 8760 Curve Guided by Gaussian Distribution [J]. Electric Power, 2025, 58(8): 31-40. |
| [2] | LI Ke, PAN Tinglong, XU Dezhi. Short-Term Power Load Forecasting Based on MSCNN-BiGRU-Attention [J]. Electric Power, 2025, 58(6): 10-18. |
| [3] | YU Duo, CAO Yi, WANG Hairong, ZHAO Aodong, CAO Qian. Short-term Load Forecasting Based on a Combined ICEEMDAN-PE and IDBO-Informer Model [J]. Electric Power, 2025, 58(6): 19-32. |
| [4] | Qingchao SUN, Jialiang LI, Wanli JIANG, Ruoyu WANG, Zhipeng LI, Yarong HU, Jianbin ZHU. Mid-long Term Urban Power Load Forecasting Based on Data-Driven Spatio-temporal Networks [J]. Electric Power, 2025, 58(3): 168-174. |
| [5] | MENG Hao, XU Fei, FU Shuai, SUN Peng, HAO Ling, LIU Boyu, LIU Zhiwei. Ultra-Short-Term Load Forecasting Method for Aggregated Users Considering the Impact of Temperature-Controlled Load Characteristics [J]. Electric Power, 2025, 58(12): 63-72, 85. |
| [6] | CHEN Jingwen, HUANG Yuqian, LIU Yaoxian, CHEN Songsong, QIAN Xiaorui, ZHOU Ying, ZHAN Xiangpeng. A KAN-BiLSTM-based Power Load Forecasting Method Utilizing Composite Factor Construction [J]. Electric Power, 2025, 58(12): 178-189, 198. |
| [7] | YU Sheng, SUN Ke, CAI Hua, LIU Jian, GU Yilei, JIANG Yunpeng. A Short-term Power Load Forecasting Method Combining Extreme Gradient Boosting Decision Tree with an Improved Informer [J]. Electric Power, 2025, 58(10): 195-205. |
| [8] | Yufei WANG, Tong DU, Weiguo BIAN, Zhao ZHANG, Huiting LIU, Lijun YANG. Short-term Load Forecasting Based on DTW K-medoids and VMD Multi-branch Neural Network for Multiple Users [J]. Electric Power, 2024, 57(6): 121-130. |
| [9] | Dan LI, Shuai HE, Wei YAN, Yue HU, Zeren FANG, Yunyan LIANG. Annual Daily Average Load Curve Prediction Considering Dynamic Time Anchors and Typical Feature Constraints [J]. Electric Power, 2024, 57(11): 36-47. |
| [10] | Ying ZHOU, Xuefeng BAI, Yang WANG, Min QIU, Chong SUN, Yajie WU, Bin LI. Analysis and Evolution Trend of Temperature-Sensitive Loads for Virtual Power Plant Operation [J]. Electric Power, 2024, 57(1): 9-17. |
| [11] | TANG Xuchen, CHAO Zhu, DUAN Qinwei, SU Binghong, CHEN Huican. Probabilistic Load Forecasting Method of High Voltage Substation Based on Hierarchical Measurement Data [J]. Electric Power, 2023, 56(8): 143-150. |
| [12] | JIA Wei, HUANG Yuchun. Method of Load Forecasting in Microgrid Based on Differential Expansion of Small Sample Data [J]. Electric Power, 2023, 56(8): 151-156,165. |
| [13] | YANG Xihang, HUANG Chun, SHEN Yatao, HU Nianen, WAN Ziheng. Fault Location Method for Distribution Lines Based on Loss Power Matching [J]. Electric Power, 2022, 55(8): 113-120. |
| [14] | LI Wenwu, SHI Qiang, LI Dan, HU Qunyong, TANG Yun, MEI Jinchao. Multi-stage Optimization Forecast of Short-term Power Load Based on VMD and PSO-SVR [J]. Electric Power, 2022, 55(8): 171-177. |
| [15] | XU Yusong, ZOU Shanhua, LU Xianling. Short-Term Load Forecasting Based on Feature Selection and Combination Model [J]. Electric Power, 2022, 55(7): 121-127. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
