Electric Power ›› 2024, Vol. 57 ›› Issue (5): 50-60.DOI: 10.11930/j.issn.1004-9649.202309084
• Flexible Resource Operation and Key Technologies of New Power System Source Network Load Storage • Previous Articles Next Articles
Zhongfei CHEN1(), Yue ZHAO1, Qiuna CAI1, Qiaoyu ZHANG1, Zelin WANG2(
), Xiaojuan DAI2, Yuguo CHEN2
Received:
2023-09-18
Accepted:
2023-12-17
Online:
2024-05-23
Published:
2024-05-28
Supported by:
Zhongfei CHEN, Yue ZHAO, Qiuna CAI, Qiaoyu ZHANG, Zelin WANG, Xiaojuan DAI, Yuguo CHEN. Adequacy Evaluation of Power System Ramping Capability Based on Net Load Forecast Error Statistics[J]. Electric Power, 2024, 57(5): 50-60.
项目 | 置信数统计法 | 分位数回归法 | ||
覆盖率/% | 95.36 | 96.02 | ||
正误差超出量/GW | 121.90 | 104.50 | ||
正误差预估量/TW | 24.70 | 26.30 | ||
负误差超出量/GW | 112.90 | 103.00 | ||
负误差预估量/TW | 25.60 | 28.00 |
Table 1 The comparison of indicators for confidence statistics and quantile regression
项目 | 置信数统计法 | 分位数回归法 | ||
覆盖率/% | 95.36 | 96.02 | ||
正误差超出量/GW | 121.90 | 104.50 | ||
正误差预估量/TW | 24.70 | 26.30 | ||
负误差超出量/GW | 112.90 | 103.00 | ||
负误差预估量/TW | 25.60 | 28.00 |
1 | 张智刚, 康重庆. 碳中和目标下构建新型电力系统的挑战与展望[J]. 中国电机工程学报, 2022, 42 (8): 2806- 2819. |
ZHANG Zhigang, KANG Chongqing. Challenges and prospects for constructing the new-type power system towards a carbon neutrality future[J]. Proceedings of the CSEE, 2022, 42 (8): 2806- 2819. | |
2 | 任大伟, 肖晋宇, 侯金鸣, 等. 计及多种灵活性约束和基于时序模拟的广域电力系统源-网-储协同规划方法[J]. 中国电力, 2022, 55 (1): 55- 63. |
REN Dawei, XIAO Jinyu, HOU Jinming, et al. Wide-area power system generation-transmission-storage coordinated planning method based on multiple flexibility constraints and time-series simulation[J]. Electric Power, 2022, 55 (1): 55- 63. | |
3 | 国家市场监督管理总局, 国家标准化管理委员会. 电力系统技术导则: GB/T 38969—2020[S]. |
4 | 吴思嘉, 迟方德, 叶希, 等. 高比例新能源电网运行备用容量需求概率动态评估方法[J]. 电力建设, 2023, 44 (6): 126- 134. |
WU Sijia, CHI Fangde, YE Xi, et al. Probabilistic dynamic assessment for operating reserve requirements of power system with high penetrated renewables[J]. Electric Power Construction, 2023, 44 (6): 126- 134. | |
5 | 杨策, 孙伟卿, 韩冬. 考虑新能源消纳能力的电力系统灵活性评估方法[J]. 电网技术, 2023, 47 (1): 338- 349. |
YANG Ce, SUN Weiqing, HAN Dong. Power system flexibility evaluation considering renewable energy accommodation[J]. Power System Technology, 2023, 47 (1): 338- 349. | |
6 | 马静洁, 张少华, 李雪, 等. 发电系统充裕度与灵活性的随机评估[J]. 电网技术, 2019, 43 (11): 3867- 3874. |
MA Jingjie, ZHANG Shaohua, LI Xue, et al. Stochastic assessment of adequacy and flexibility of power generation systems[J]. Power System Technology, 2019, 43 (11): 3867- 3874. | |
7 | 刘忠义, 何平, 宣文博, 等. 面向可再生能源并网系统的灵活性评估方法[J]. 电力系统及其自动化学报, 2020, 32 (11): 95- 101. |
LIU Zhongyi, HE Ping, XUAN Wenbo, et al. Flexibility evaluation method for power system towards grid-connected renewable energy[J]. Proceedings of the CSU-EPSA, 2020, 32 (11): 95- 101. | |
8 | 刘立阳, 吴军基, 孟绍良. 短期风电功率预测误差分布研究[J]. 电力系统保护与控制, 2013, 41 (12): 65- 70. |
LIU Liyang, WU Junji, MENG Shaoliang. Research on error distribution of short-term wind power prediction[J]. Power System Protection and Control, 2013, 41 (12): 65- 70. | |
9 | 王松岩, 李碧君, 于继来, 等. 风速与风电功率预测误差概率分布的时变特性分析[J]. 电网技术, 2013, 37 (4): 967- 973. |
WANG Songyan, LI Bijun, YU Jilai, et al. Analysis on time-varying characteristics of probability error in forecast of wind speed and wind power[J]. Power System Technology, 2013, 37 (4): 967- 973. | |
10 | 刘斌, 周京阳, 周海明, 等. 一种改进的风电功率预测误差分布模型[J]. 华东电力, 2012, 40 (2): 286- 291. |
LIU Bin, ZHOU Jingyang, ZHOU Haiming, et al. An improved model for wind power forecast error distribution[J]. East China Electric Power, 2012, 40 (2): 286- 291. | |
11 | 杨茂, 杜刚. 基于t Location-Scale分布的风电功率概率预测研究[J]. 中国电力, 2017, 50 (1): 140- 145. |
YANG Mao, DU Gang. Wind power probability prediction based on t location-scale distrubution[J]. Electric Power, 2017, 50 (1): 140- 145. | |
12 |
BRUNINX K, DELARUE E. A statistical description of the error on wind power forecasts for probabilistic reserve sizing[J]. IEEE Transactions on Sustainable Energy, 2014, 5 (3): 995- 1002.
DOI |
13 |
杨茂, 董骏城. 基于混合高斯分布的风电功率实时预测误差分析[J]. 太阳能学报, 2016, 37 (6): 1594- 1602.
DOI |
YANG Mao, DONG Juncheng. Real-time prediction error analysis of wind power based on mixed Gaussian distribution model[J]. Acta Energiae Solaris Sinica, 2016, 37 (6): 1594- 1602.
DOI |
|
14 |
马伟, 谢丽蓉, 马兰, 等. 短期风电功率预测误差及出力波动的概率建模[J]. 太阳能学报, 2023, 44 (11): 361- 366.
DOI |
MA Wei, XIE Lirong, MA Lan, et al. Probabilistic modeling of short-term wind power prediction errors and output fluctuations[J]. Acta Energiae Solaris Sinica, 2023, 44 (11): 361- 366.
DOI |
|
15 | 张金环, 王超群, 张彤, 等. 基于高斯混合分布模型的风电功率预测误差统计分析研究[J]. 智慧电力, 2020, 48 (7): 59- 64, 72. |
ZHANG Jinhuan, WANG Chaoqun, ZHANG Tong, et al. Statistical analysis of wind power forecasting errors based on Gaussian mixture model[J]. Smart Power, 2020, 48 (7): 59- 64, 72. | |
16 | 李海波, 鲁宗相, 乔颖, 等. 大规模风电并网的电力系统运行灵活性评估[J]. 电网技术, 2015, 39 (6): 1672- 1678. |
LI Haibo, LU Zongxiang, QIAO Ying, et al. Assessment on operational flexibility of power grid with grid-connected large-scale wind farms[J]. Power System Technology, 2015, 39 (6): 1672- 1678. | |
17 |
BLUDSZUWEIT H, DOMINGUEZ-NAVARRO J A, LLOMBART A. Statistical analysis of wind power forecast error[J]. IEEE Transactions on Power Systems, 2008, 23 (3): 983- 991.
DOI |
18 |
WANG Y, NIE R, CHI P, et al. A novel fractional structural adaptive grey Chebyshev polynomial Bernoulli model and its application in forecasting renewable energy production of China[J]. Expert Systems with Applications, 2022, 210, 118500.
DOI |
19 |
DONG Y C, ZHANG H L, WANG C, et al. A novel hybrid model based on Bernstein polynomial with mixture of Gaussians for wind power forecasting[J]. Applied Energy, 2021, 286, 116545.
DOI |
20 | CAISO. Flexible ramping product: draft final technical appendix[R]. California: CAISO, 2016. |
21 | CAISO. Business requirements specification: flexible ramp product requirement enhancements[R]. California: CAISO, 2022. |
22 | 魏利屾, 冯宇昂, 方家琨, 等. 现货市场环境下新能源并网接入对市场出清的影响[J]. 上海交通大学学报, 2021, 55 (12): 1631- 1639. |
WEI Lishen, FENG Yuang, FANG Jiakun, et al. Impact of renewable energy integration on market-clearing results in spot market environment[J]. Journal of Shanghai Jiao Tong University, 2021, 55 (12): 1631- 1639. | |
23 | 彭超逸, 顾慧杰, 朱文, 等. 交直流混联区域电网现货市场出清模型研究[J]. 电网技术, 2020, 44 (1): 323- 331. |
PENG Chaoyi, GU Huijie, ZHU Wen, et al. Study on spot market clearing model of regional power grid considering AC/DC hybrid connection[J]. Power System Technology, 2020, 44 (1): 323- 331. | |
24 | 亢丽君, 王蓓蓓, 薛必克, 等. 计及爬坡场景覆盖的高比例新能源电网平衡策略研究[J]. 电工技术学报, 2022, 37 (13): 3275- 3288. |
KANG Lijun, WANG Beibei, XUE Bike, et al. Research on the balance strategy for power grid with high proportion renewable energy considering the ramping scenario coverage[J]. Transactions of China Electrotechnical Society, 2022, 37 (13): 3275- 3288. | |
25 | 李雄威, 王昕, 顾佳伟, 等. 考虑火电深度调峰的风光火储系统日前优化调度[J]. 中国电力, 2023, 56 (1): 1- 7, 48. |
LI Xiongwei, WANG Xin, GU Jiawei, et al. Day-ahead optimal dispatching of wind-solar-thermal power storage system considering deep peak shaving of thermal power[J]. Electric Power, 2023, 56 (1): 1- 7, 48. |
[1] | Xiangjing SU, Haibo YU, Yang FU, Shuxin TIAN, Haiyu LI, Fuhai GENG. Probabilistic Forecasting of Offshore Wind Power Based on Dual-stage Attentional LSTM and Joint Quantile Loss Function [J]. Electric Power, 2023, 56(11): 10-19. |
[2] | SHA Jun, XU Yusen, LIU Chongchong, FENG Dingdong, XU Zheng, ZANG Haixiang. Short-Term Wind Power Prediction Based on Variational Modal Decomposition and Quantile Convolution-Recurrent Neural Network [J]. Electric Power, 2022, 55(12): 61-68. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||