Electric Power ›› 2024, Vol. 57 ›› Issue (5): 39-49.DOI: 10.11930/j.issn.1004-9649.202305056
• Flexible Resource Operation and Key Technologies of New Power System Source Network Load Storage • Previous Articles Next Articles
Yunlong WANG(), Lu HAN(
), Shulin LUO, Tao WU
Received:
2023-05-11
Accepted:
2023-08-09
Online:
2024-05-23
Published:
2024-05-28
Supported by:
Yunlong WANG, Lu HAN, Shulin LUO, Tao WU. Load Scheduling Optimization of Home Electric Heating Integrated Energy System with Electric Vehicle[J]. Electric Power, 2024, 57(5): 39-49.
热感觉 | 热 | 暖 | 微暖 | 适中 | 微凉 | 凉 | 冷 | |||||||
PMV值 | +3 | +2 | +1 | 0 | –1 | –2 | –3 |
Table 1 PMV thermal sensing scale
热感觉 | 热 | 暖 | 微暖 | 适中 | 微凉 | 凉 | 冷 | |||||||
PMV值 | +3 | +2 | +1 | 0 | –1 | –2 | –3 |
负荷类型 | 工作时间范围 | 额定功率/kW | 所需工作时间 (采样间隔个数) | |||
可中断负荷1 | 00:00—07:00, 19:00—23:45 | 0.4 | 4, 6 | |||
可中断负荷2 | 07:00—10:00, 14:00—17:00 | 0.4 | 2, 5 | |||
可中断负荷3 | 12:00—15:00, 18:00—21:00 | 0.6 | 5, 2 | |||
不可中断负荷1 | 09:00—12:00 | 0.7 | 3 | |||
不可中断负荷2 | 15:00—18:00 | 0.7 | 3 | |||
不可中断负荷3 | 21:00—23:45 | 0.7 | 3 | |||
不可中断负荷4 | 07:00—14:00 | 0.5 | 3 |
Table 2 Schedulable load parameters
负荷类型 | 工作时间范围 | 额定功率/kW | 所需工作时间 (采样间隔个数) | |||
可中断负荷1 | 00:00—07:00, 19:00—23:45 | 0.4 | 4, 6 | |||
可中断负荷2 | 07:00—10:00, 14:00—17:00 | 0.4 | 2, 5 | |||
可中断负荷3 | 12:00—15:00, 18:00—21:00 | 0.6 | 5, 2 | |||
不可中断负荷1 | 09:00—12:00 | 0.7 | 3 | |||
不可中断负荷2 | 15:00—18:00 | 0.7 | 3 | |||
不可中断负荷3 | 21:00—23:45 | 0.7 | 3 | |||
不可中断负荷4 | 07:00—14:00 | 0.5 | 3 |
场景 | 天气 | 含热泵 | 含电动汽车 | |||
1 | 晴天 | × | × | |||
2 | 晴天 | √ | √ | |||
3 | 阴天 | × | × | |||
4 | 阴天 | √ | √ |
Table 3 Example simulation scenarios
场景 | 天气 | 含热泵 | 含电动汽车 | |||
1 | 晴天 | × | × | |||
2 | 晴天 | √ | √ | |||
3 | 阴天 | × | × | |||
4 | 阴天 | √ | √ |
时段 | 供热温度/℃ | λPMV | 时段 | 供热温度/℃ | λPMV | |||||
1 | 20.41 | –0.50 | 13 | 20.53 | –0.47 | |||||
2 | 20.41 | –0.50 | 14 | 20.41 | –0.50 | |||||
3 | 20.41 | –0.50 | 15 | 20.42 | –0.50 | |||||
4 | 20.41 | –0.50 | 16 | 20.87 | –0.40 | |||||
5 | 20.41 | –0.50 | 17 | 23.42 | –0.50 | |||||
6 | 20.46 | –0.49 | 18 | 24.18 | 0.34 | |||||
7 | 20.54 | –0.47 | 19 | 22.61 | –0.01 | |||||
8 | 20.41 | –0.50 | 20 | 20.74 | –0.43 | |||||
9 | 20.55 | –0.47 | 21 | 20.96 | –0.38 | |||||
10 | 20.44 | –0.49 | 22 | 21.68 | –0.22 | |||||
11 | 20.76 | –0.42 | 23 | 20.46 | –0.49 | |||||
12 | 20.54 | –0.47 | 24 | 20.46 | –0.49 |
Table 4 Scenario 2 average indoor temperature and PMV values in each period
时段 | 供热温度/℃ | λPMV | 时段 | 供热温度/℃ | λPMV | |||||
1 | 20.41 | –0.50 | 13 | 20.53 | –0.47 | |||||
2 | 20.41 | –0.50 | 14 | 20.41 | –0.50 | |||||
3 | 20.41 | –0.50 | 15 | 20.42 | –0.50 | |||||
4 | 20.41 | –0.50 | 16 | 20.87 | –0.40 | |||||
5 | 20.41 | –0.50 | 17 | 23.42 | –0.50 | |||||
6 | 20.46 | –0.49 | 18 | 24.18 | 0.34 | |||||
7 | 20.54 | –0.47 | 19 | 22.61 | –0.01 | |||||
8 | 20.41 | –0.50 | 20 | 20.74 | –0.43 | |||||
9 | 20.55 | –0.47 | 21 | 20.96 | –0.38 | |||||
10 | 20.44 | –0.49 | 22 | 21.68 | –0.22 | |||||
11 | 20.76 | –0.42 | 23 | 20.46 | –0.49 | |||||
12 | 20.54 | –0.47 | 24 | 20.46 | –0.49 |
1 |
施泉生, 丁建勇, 刘坤, 等. 含电、气、热3种储能的微网综合能源系统经济优化运行[J]. 电力自动化设备, 2019, 39 (8): 269- 276, 293.
DOI |
SHI Quansheng, DING Jianyong, LIU Kun, et al. Economic optimal operation of microgrid integrated energy system with electricity, gas and heat storage[J]. Electric Power Automation Equipment, 2019, 39 (8): 269- 276, 293.
DOI |
|
2 |
SAIDU A M, MUHAMMAD A, IMRAN G, et al. Systematic review analysis on smart building: challenges and opportunities[J]. Sustainability, 2022, 14 (5): 3009.
DOI |
3 |
金炼, 张亚君, 杨尚恒, 等. 家庭用微型热电联产技术[J]. 现代化工, 2012, 32 (5): 6- 9, 15.
DOI |
JIN Lian, ZHANG Yajun, YANG Shangheng, et al. Micro-combined heat and power technology for household use[J]. Modern Chemical Industry, 2012, 32 (5): 6- 9, 15.
DOI |
|
4 | 李岩学, 高伟俊, 张晓易, 等. 日本零能耗住宅及智能化家庭能源管理系统应用现状研究[J]. 中外能源, 2019, 24 (10): 89- 97. |
LI Yanxue, GAO Weijun, ZHANG Xiaoyi, et al. Zero energy house in Japan and the application of smart home energy management system[J]. Sino-Global Energy, 2019, 24 (10): 89- 97. | |
5 | 蔡钦钦, 杨晓华, 朱永强. 楼宇能量管理系统的光伏消纳与储能调度研究[J]. 电力建设, 2020, 41 (1): 23- 31. |
CAI Qinqin, YANG Xiaohua, ZHU Yongqiang. Research on photovoltaic accommodation and energy storage scheduling of building energy management system[J]. Electric Power Construction, 2020, 41 (1): 23- 31. | |
6 |
HUANG Y T, ZHANG J J, MO Y J, et al. A hybrid optimization approach for residential energy management[J]. IEEE Access, 2020, 8, 225201- 225209.
DOI |
7 |
张华一, 文福拴, 张璨, 等. 计及舒适度的家庭能源中心运行优化模型[J]. 电力系统自动化, 2016, 40 (20): 32- 39.
DOI |
ZHANG Huayi, WEN Fushuan, ZHANG Can, et al. Operation optimization model of home energy hubs considering comfort level of customers[J]. Automation of Electric Power Systems, 2016, 40 (20): 32- 39.
DOI |
|
8 |
YAO L, TEO J C. Optimization of power dispatch with load scheduling for domestic fuel cell-based combined heat and power system[J]. IEEE Access, 2022, 10, 5968- 5979.
DOI |
9 |
ABDELAAL G, GILANY M I, ELSHAHED M, et al. Integration of electric vehicles in home energy management considering urgent charging and battery degradation[J]. IEEE Access, 2021, 9, 47713- 47730.
DOI |
10 |
贾雁冰, 杨阳方, 刘继春, 等. 售用双方协同优化的家庭柔性负荷管理策略[J]. 电网技术, 2019, 43 (4): 1430- 1438.
DOI |
JIA Yanbing, YANG Yangfang, LIU Jichun, et al. Management strategy for domestic flexible load to achieve retailer-user coordinated optimization[J]. Power System Technology, 2019, 43 (4): 1430- 1438.
DOI |
|
11 |
林俐, 顾嘉, 王铃. 面向风电消纳的考虑热网特性及热舒适度弹性的电热联合优化调度[J]. 电网技术, 2019, 43 (10): 3648- 3661.
DOI |
LIN Li, GU Jia, WANG Ling. Optimal dispatching of combined heat-power system considering characteristics of thermal network and thermal comfort elasticity for wind power accommodation[J]. Power System Technology, 2019, 43 (10): 3648- 3661.
DOI |
|
12 |
文明, 胡资斌, 龙乙林, 等. 考虑碳排放惩罚因子的综合能源系统优化规划[J]. 电力科学与技术学报, 2021, 36 (3): 11- 18.
DOI |
WEN Ming, HU Zibin, LONG Yilin, et al. Optimal planning of integrated energy system considering carbon emission penalty factor[J]. Journal of Electric Power Science and Technology, 2021, 36 (3): 11- 18.
DOI |
|
13 | MALINA R M. Thermal comfort: analysis and applications in environmental engineering by P. O. Fanger[J]. Human Biology, 1973, 45, 116- 117. |
14 |
LEITÃO J, GIL P, RIBEIRO B, et al. A survey on home energy management[J]. IEEE Access, 2020, 8, 5699- 5722.
DOI |
15 | ANVARI-MOGHADDAM A, MONSEF H, RAHIMI-KIAN A. Optimal smart home energy management considering energy saving and a comfortable lifestyle[C]//2016 IEEE Power and Energy Society General Meeting (PESGM). Boston, MA, USA. IEEE, 2016: 1. |
16 | 陈维荣, 冉韵早, 韩莹, 等. 考虑两阶段P2G的区域综合能源系统优化调度[J/OL]. 西南交通大学学报: 1–9[2023-09-27]. http://kns.cnki.net/kcms/detail/51.1277.U.20211230.0937.002.html. |
CHEN Weirong, RAN Yunzao, HAN Ying, et al. Optimal scheduling of regional integrated energy systems under two-stage P2G[J/OL]. Journal of Southwest Jiaotong University: 1–9[2023-09-27]. http://kns.cnki.net/kcms/detail/51.1277.U.20211230.0937.002.html. | |
17 | 安佳坤, 杨书强, 王涛, 等. 电动汽车聚合下的微能源互联网优化调度策略[J]. 中国电力, 2023, 56 (5): 80- 88. |
AN Jiakun, YANG Shuqiang, WANG Tao, et al. Optimal scheduling strategy for micro energy Internet under electric vehicles aggregation[J]. Electric Power, 2023, 56 (5): 80- 88. | |
18 | 叶宇剑, 袁泉, 汤奕. 面向双碳目标的交通网-电网耦合网络中电动汽车负荷低碳优化方法[J]. 中国电力, 2023, 56 (5): 72- 79. |
YE Yujian, YUAN Quan, TANG Yi. Electric vehicle charging demand low carbon optimization in traffic-grid coupling networks towards "dual carbon" goal[J]. Electric Power, 2023, 56 (5): 72- 79. | |
19 | 康继光, 琚洁华, 赵艳敏, 等. 计及能源社区产消者的综合能源系统优化方法[J]. 中国电力, 2023, 56 (11): 206- 216. |
KANG Jiguang, JU Jiehua, ZHAO Yanmin et al. Integrated energy system optimization considering energy communities with prosumers[J]. Electric Power, 2023, 56 (11): 206- 216. | |
20 | 张涛, 刘伉, 陶然, 等. 计及热媒流率和热损耗不确定性的综合能源系统优化调度[J]. 中国电力, 2023, 56 (4): 146- 155. |
ZHANG Tao, LIU Kang, TAO Ran, et al. Optimal scheduling of integrated energy system considering uncertainty of heat medium flow rate and heating network loss[J]. Electric Power, 2023, 56 (4): 146- 155. |
[1] | Yumin ZHANG, Yanbin Yin, Xingquan JI, Pingfeng YE, Donglei SUN, Aiquan SONG. Optimal Dispatch of Integrated Electric-Heat Energy System Considering Supply Flexibility of Heat Networks Under Different Operation States [J]. Electric Power, 2025, 58(2): 88-102. |
[2] | Zhongqi LIU, Yao LIU, Jinming HOU. Economic Analysis of Energy Transmission for Energy Island Based on Deep-Sea Offshore Wind Farms [J]. Electric Power, 2024, 57(9): 94-102. |
[3] | Zhipeng LV, Zhenhao SONG, Lisheng LI, Yang LIU. Optimization Scheduling of Integrated Energy System Scheduling in Industrial Park containing Electric Vehicles [J]. Electric Power, 2024, 57(4): 25-31. |
[4] | Suhao CHEN, Yue WU, Wei ZENG, Xiaohui YANG, Xiaopeng WANG, Yunfei WU. Two-Stage Dispatch of CCHP Microgrid Based on NNC and DMC [J]. Electric Power, 2024, 57(2): 171-182. |
[5] | WANG Ruiqi, WANG Xinli, GUO Guanghua, ZHANG Yuhang, ZHOU Haini, ZHOU Qi. Modeling and Robust Optimal Dispatch of Rural Integrated Energy System Considering PV-Hydrogen-Methane Energy Storage Characteristics [J]. Electric Power, 2023, 56(5): 89-98. |
[6] | Jiguang KANG, Jiehua JU, Yanmin ZHAO, Yutong ZHAO, Xuetao BAI, Yingru ZHAO, Rui JING. Integrated Energy System Optimization Considering EnergyCommunities with Prosumers [J]. Electric Power, 2023, 56(11): 206-216. |
[7] | HUANG Weijie, JIANG Yuewen. Comparison of Economic Feasibilites Between Power Transmission and Hydrogen Production from an Offshore Wind Farm [J]. Electric Power, 2022, 55(1): 91-100. |
[8] | LYU Jie, YANG Weijia, HUANG Wei, PANG Hui, KONG Ming, YANG Yunxia, ZHANG Wenwen. Techno-economic of 66 kV AC Connection Solution for Offshore Wind Power [J]. Electric Power, 2020, 53(7): 72-79. |
[9] | WANG Du, LIU Yuxian, WAN Mingyuan, ZHAO Siwei, JIANG Jianming. Configuration and Operation Optimization of Circulating Water Pumps for 660 MW Ultra-supercritical Unit [J]. Electric Power, 2020, 53(2): 112-119. |
[10] | ZHANG Zhizhong, ZHANG Yang, DU Zhen, PEI Yukun, XU Ketao, ZHU Yue. Techno-Economic Analysis on Comprehensive SO2 and Dust Treatment Technologies of 600 MW Coal-Fired Units [J]. Electric Power, 2019, 52(3): 36-42. |
[11] | LIANG Xiujin, ZHU Wentao, WEI Hongge, ZHU Yue. Technical Route Selection and Economic Analysis on Wet Plume Treatment for Coal-fired Units [J]. Electric Power, 2019, 52(3): 16-22. |
[12] | HUANG Zheng, SHU Jianjun, YU Guoqiang, SI Fengqi, ZHOU Jianxin. Cycle Pump Optimization Management System for CCGT Power Plants [J]. Electric Power, 2019, 52(3): 120-126. |
[13] | YAN Xiaokun, JIAO Kaiming, XU Cheng. Thermo-economic Analysis of a Blending Coal-fired Power Plant [J]. Electric Power, 2018, 51(9): 8-14. |
[14] | YOU Liangzhou, WANG Fengji, HU Da, ZHU Yue. Technical and Economic Analysis on the Application of High Efficiency Dust Precipitator in Ultra-low Emission Units [J]. Electric Power, 2018, 51(8): 162-166,179. |
[15] | ZHANG Tao, TIAN Bin, ZONG Zhigang, YU Yuan, YANG Gang, MIAO Zhu, A Sileng. Planning and Typical Engineering Application of Distribution Automation [J]. Electric Power, 2017, 50(9): 44-51. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||