Electric Power ›› 2019, Vol. 52 ›› Issue (3): 36-42.DOI: 10.11930/j.issn.1004-9649.201807098
Previous Articles Next Articles
ZHANG Zhizhong, ZHANG Yang, DU Zhen, PEI Yukun, XU Ketao, ZHU Yue
Received:
2018-07-31
Revised:
2018-08-27
Online:
2019-03-05
Published:
2019-03-27
CLC Number:
ZHANG Zhizhong, ZHANG Yang, DU Zhen, PEI Yukun, XU Ketao, ZHU Yue. Techno-Economic Analysis on Comprehensive SO2 and Dust Treatment Technologies of 600 MW Coal-Fired Units[J]. Electric Power, 2019, 52(3): 36-42.
[1] | 环境保护部, 发展改革委. 全面实施燃煤电厂超低排放和节能改造工作方案:环发 |
[2015] 164号[A]. 2015. | |
[2] | 杜振, 魏宏鸽, 张杨, 等. 高效脱硫协同除尘关键技术分析[J]. 中国电力, 2018, 51(6):37-41 DU Zhen, WEI Hongge, ZHANG Yang, et al. Analysis on key technologies of high efficiency desulfurization and collaborative dust removal[J]. Electric Power, 2018, 51(6):37-41 |
[3] | YANG Zhengda, ZHENG Chenghang, LIU Shaojun, et al. A combined wet electrostatic precipitator for efficiently eliminating fine particle penetration[J]. Fuel Processing Technology, 2018(180):122-129. |
[4] | 朱杰, 许月阳, 姜岸, 等. 超低排放下不同湿法脱硫协同控制颗粒物性能测试与研究[J]. 中国电力, 2017, 50(1):168-172 ZHU Jie, XU Yueyang, JIANG An, et al. Test and study on performance of wet FGD coordinated particulate matter control for ultra-low pollutants emission[J]. Electric Power, 2017, 50(1):168-172 |
[5] | 中国环境保护产业协会. 燃煤电厂烟气超低排放技术[M]. 北京:中国电力出版社, 2015. |
[6] | MELCHER J R, SACHAR K S, WARREN E P. Overview of electrostatic devices for control of submicrometer particles[J]. Proceedings of the IEEE, 1977, 65(12):1659-1669. |
[7] | BAO Jingjing, YANG Linjun, YAN Jinpei, et al. Experimental study of fine particles removal in the desulfurated scrubbed flue gas[J]. Fuel, 2013, 108:73-79. |
[8] | NYGAARD H G, KⅡL S, JOHNSSON J E, et al. Full-scale measurements of SO2 gas phase concentrations and slurry compositions in a wet flue gas desulphurization spray absorber[J]. Fuel, 2004, 83(9):1151-1164. |
[9] | 崔向丽, 邓徐帧, 胡文胜, 等. 湿法烟气脱硫液气比的影响因素及参数确定[J]. 电力科技与环保, 2010, 26(3):22-23 CUI Xiangli, DENG Xuzhen, HU Wensheng, et al. Factor of liquid-gas ratio and parameter confirm in wet flue gas desulfurization process[J]. Electric Power Technology and Environmental Protection, 2010, 26(3):22-23 |
[10] | 翟德双. 燃煤电厂锅炉超净排放技术改造探讨[J]. 华东电力, 2014, 42(10):2218-2221 ZHAI Deshuang. Boiler super-clean emission technological renovation for coal-fired power plants[J]. East China Electric Power, 2014, 42(10):2218-2221 |
[11] | 李建光, 姚超良, 王芙蓉, 等. 烟气净化的高效脱硫除尘系统在百万机组上的应用[J]. 能源环境保护, 2017, 31(1):43-47 LI Jianguang, YAO Chaoliang, WANG Furong, et al. Application of flue gas high efficiency desulphurization and dust removal system in million units[J]. Energy Environmental Protection, 2017, 31(1):43-47 |
[12] | 王珲, 宋蔷, 姚强, 等. 电厂湿法脱硫系统对烟气中细颗粒物脱除作用的实验研究[J]. 中国电机工程学报, 2008, 28(5):1-7 WANG Hui, SONG Qiang, YAO Qiang, et al. Experimental study on removal effect of wet flue gas desulfurization system on fine particles from a coal-fired power plant[J]. Proceedings of the CSEE, 2008, 28(5):1-7 |
[13] | 陈牧, 胡玉清, 桂本. 利用协同治理技术实现燃煤电厂烟尘超低排放[J]. 中国电力, 2015, 48(9):146-151 CHEN Mu, HU Yuqing, GUI Ben. Synergistic control technology for ultra-low PM emission from coal-fired power plants and its application[J]. Electric Power, 2015, 48(9):146-151 |
[14] | MEIJ R, WINKEL H. The emissions and environmental impact of PM10 and trace elements from a modern coal-fired power plant equipped with ESP and wet FGD[J]. Fuel Processing Technology, 2004, 85(6-7):641-656. |
[15] | 叶萌, 陆大银, 何永胜. "203"超低脱硫协同除尘新技术应用[J]. 环境影响评价, 2017, 39(1):57-60 YE Meng, LU Dayin, HE Yongsheng. The application of"203"new ultra-low desulfurizing and de-dusting technology[J]. Environmental Impact Assessment, 2017, 39(1):57-60 |
[16] | 魏宏鸽, 徐明华, 柴磊, 等. 双塔双循环脱硫系统的运行现状分析与优化措施探讨[J]. 中国电力, 2016, 49(10):132-135 WEI Hongge, XU Minghua, CHAI Lei, et al. Current operation state analysis and optimization method exploration on double-tower double-cycle wet-FGD systems[J]. Electric Power, 2016, 49(10):132-135 |
[17] | 刘海龙, 蔡向东. 管束式除尘装置与湿式静电除尘装置在电厂的应用分析[J]. 华北电力技术, 2017(9):65-70 LIU Hailong, CAI Xiangdong. Application analysis of tubular precipitator and wet electrostatic precipitator in power plant[J]. North China Electric Power, 2017(9):65-70 |
[18] | 史晓宏, 李广滨, 魏书州, 等. 350 MW燃煤机组降低烟尘排放术的研究与实践[J]. 中国电力, 2015, 48(5):93-96 SHI Xiaohong, LI Guangbin, WEI Shuzhou, et al. Research and practice on dust emission reduction technology in 350 MW coal-fired generator unit[J]. Electric Power, 2015, 48(5):93-96 |
[19] | 姚建村. 管束式除尘器和湿式电除尘器的应用对比分析[J]. 环境与发展, 2017(5):127-130 YAO Jiancun. Application of tube-type dust collector and wet electrostatic precipitator[J]. Environment and Development, 2017(5):127-130 |
[20] | 王丰吉, 尤良洲, 朱跃, 等. 冷凝式除雾器在脱硫系统中的应用及性能评价[J]. 中国电力, 2018, 51(4):143-148 WANG Fengji, YOU Liangzhou, ZHU Yue, et al. Application and performance evaluation of condensed mist eliminator in desulphurization system[J]. Electric Power, 2018, 51(4):143-148 |
[1] | Chao YI, Da TENG, Shaowei SONG, Ou CHEN. Application Analysis of Flue Gas Condensation Recovery in Coal-fired Power Plants by Spraying Method [J]. Electric Power, 2023, 56(11): 226-235. |
[2] | LIU Hanxiao, WU Liming, ZHAO Lin, YU Liyuan, LI Jianguo, CUI Ying. Study on Emission Reduction and Energy Efficiency Characteristics of Wet Electrostatic Precipitator for Coal Fired Power Plants [J]. Electric Power, 2022, 55(5): 196-203. |
[3] | ZHANG Zhiyong, MO Hua, WANG Meng, SHUAI Wei. Study of Flue Gas Pollutant Control in a 600 MW Coal-Fired Unit [J]. Electric Power, 2022, 55(5): 204-210. |
[4] | ZHANG Guozhu, ZHANG Juntai, WEN Yu, YANG Kaixuan, LIU Ming, LIU Jiping. Study on Off-design Condition Characteristics and Control Strategy of Fluegas Waste Heat and Water Recovery System of Coal-Fired Power Plants [J]. Electric Power, 2022, 55(4): 214-220. |
[5] | HUANG Jingjie, LIU Louzhi, YIN Xufeng, LI Xueqin, PAN Xuan, ZHOU Renjun. Coordinated and Optimized Operation of Waste Incineration Plant-Flue Gas Treatment-P2G with Carbon Cycle [J]. Electric Power, 2022, 55(3): 152-158. |
[6] | SUN Zunqiang, ZHENG Chenghang, ZHOU Can, WANG Sheng, MA Xiuyuan, YE Yike. Operational Status Analysis and Optimization Suggestions of Typical Dust Collectors in Coal-Fired Power Plants [J]. Electric Power, 2022, 55(11): 194-201. |
[7] | WANG Yanzhe, ZHOU Sheng, YAO Zilin, OU Xunmin. Life Cycle Modeling Analysis of the Interaction Between Carbon Dioxide and Air Pollutant Emissions of Coal Power in China [J]. Electric Power, 2021, 54(8): 128-135. |
[8] | ZHU Fahua, XU Yueyang, SUN Zunqiang, SUN Xueli, WANG Sheng. Practice and Enlightenment of Ultra-low Emission and Energy-Saving Retrofit of Coal-Fired Power Plants in China [J]. Electric Power, 2021, 54(4): 1-8. |
[9] | WU Jiayu, MO Hua, HU Yun, ZHU Jie, SHUAI Wei, ZHANG Qing, JIANG An. Spatio-Temporal Variation Characteristics of Fugitive Particulate Matter Emissions from the Coal Storage Yard of Coal-Fired Power Plants in Beijing-Tianjin-Hebei and Surrounding Areas under Different Regulatory Scenarios [J]. Electric Power, 2021, 54(2): 182-189. |
[10] | HUI Lifeng. Comparative Analysis of PM10/PM2.5 Laboratory Sampling for Ultra-low Emission of Coal-Fired Power Plants [J]. Electric Power, 2021, 54(2): 190-196. |
[11] | ZHAO Hong, ZHANG Fajie, MA Yunlong, MA Baolin, TANG Xiao, XU Renbo, LUO Tongda, LI Chengbao, REN Chuanming, YU Jie, SUN Lushi. Test Study on the Migration Characteristics of Slip Ammonia from the SCR System in the Coal-Fired Power Plant [J]. Electric Power, 2021, 54(1): 196-202. |
[12] | ZHAO Bing, WANG Haigang, HU Dong, CHEN Kunyang, JIN Xuliang, YIN Aiming. Study on Mercury Removal Performance of Alkali Adsorbent in Coal-Fired Power Plant [J]. Electric Power, 2020, 53(9): 208-213. |
[13] | JIA Xibu. In-depth Analysis on Wastewater Discharge of Wet Limestone-Gypsum FGD [J]. Electric Power, 2020, 53(8): 139-144,163. |
[14] | WU Jiayu, ZHU Jie, MO Hua, ZHANG Feng, SHUAI Wei, ZHANG Qing, NA Qin. Test Study on SO3 Control Effect of Slurry Cooling Wet Plume Treatment Project in a Typical Coal-Fired Power Plant [J]. Electric Power, 2020, 53(8): 145-150,172. |
[15] | LYU Jie, YANG Weijia, HUANG Wei, PANG Hui, KONG Ming, YANG Yunxia, ZHANG Wenwen. Techno-economic of 66 kV AC Connection Solution for Offshore Wind Power [J]. Electric Power, 2020, 53(7): 72-79. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||