Electric Power ›› 2021, Vol. 54 ›› Issue (2): 190-196.DOI: 10.11930/j.issn.1004-9649.202006319
Previous Articles Next Articles
HUI Lifeng
Received:
2020-07-08
Revised:
2020-11-30
Published:
2021-02-06
Supported by:
HUI Lifeng. Comparative Analysis of PM10/PM2.5 Laboratory Sampling for Ultra-low Emission of Coal-Fired Power Plants[J]. Electric Power, 2021, 54(2): 190-196.
[1] 石元春. 中国雾霾的产生机理及应对策略研究[J]. 陕西电力, 2013, 41(4): 1-4 SHI Yuanchun. Frog haze production mechanism & treatment strategy in China[J]. Shaanxi Electric Power, 2013, 41(4): 1-4 [2] CHEN X J, LIU Q Z, YUAN C, et al. Emission characteristics of fine particulate matter from ultra-low emission power plants[J]. Environmental Pollution, 2019, 255(Pt 1): 113157. [3] 徐明厚, 王文煜, 温昶, 等. 燃煤电厂细微颗粒物脱除技术研究新进展[J]. 中国电机工程学报, 2019, 39(22): 6627-6640 XU Minghou, WANG Wenyu, WEN Chang, et al. Research development of precipitation technology to accomplish the ultra-low emission from coal-fired power plants[J]. Proceedings of the CSEE, 2019, 39(22): 6627-6640 [4] 赵秀勇, 朱法华, 王圣, 等. 江苏省火电超低排放对环境空气中PM2.5质量浓度影响模拟研究[J]. 中国电力, 2019, 52(9): 167-172 ZHAO Xiuyong, ZHU Fahua, WANG Sheng, et al. Simulation study of the impacts of ultra-low emission implemented in thermal power plants on PM2.5 mass concentration in ambient air of Jiangsu Province[J]. Electric Power, 2019, 52(9): 167-172 [5] Stationary source emissions—determination of PM10/PM2.5 mass concentration in flue gas—measurement at low concentrations by use of impactors: ISO 23210—2009[S]. [6] Stationary source emissions—test method for determining PM2.5 and PM10 mass in stack gases using cyclone samplers and sample dilution: ISO 25597—2013[S]. [7] 易玉萍, 朱法华, 段玖祥, 等. 燃煤电厂低浓度颗粒物的测试方法研究[J]. 电力科技与环保, 2018, 34(1): 32-36 YI Yuping, ZHU Fahua, DUAN Jiuxiang et al. Research on test methods of low concentrations particulate matter in coal-fired power plant[J]. Electric Power Technology and Environmental Protection, 2018, 34(1): 32-36 [8] 孟令媛, 朱法华, 易玉萍, 等. 燃煤电厂超低排放颗粒物测试方法研究[J]. 中国电力, 2016, 49(10): 123-126 MENG Lingyuan, ZHU Fahua, YI Yuping, et al. Study on testing methods of particulate matter at ultra-low concentration from coal-fired power plants[J]. Electric Power, 2016, 49(10): 123-126 [9] 中华人民共和国生态环境部. 大气细颗粒物一次源排放清单编制技术指南(试行) [EB/OL]. (2014-08-20)[2020-07-03]. http://www.mep.gov.cn/gkml/hbb/bgg/201408/W020140828351293619540.pdf. [10] 中华人民共和国生态环境部. 大气可吸入颗粒物一次源排放清单编制技术指南[EB/OL]. (2014-12-31)[2020-07-03]. http://www.me.gov.cn/gkm1/hbb/bgg/201501/W020150107594587771088.pdf. [11] 刘含笑, 姚宇平, 郦建国, 等. 燃煤电厂PM2.5测试方法研究[J]. 电力与能源, 2018, 39(1): 101-106 LIU Hanxiao, YAO Yuping LI Jianguo et al. PM2.5 test method for coal-fired power plants[J]. Power & Energy, 2018, 39(1): 101-106 [12] 李昌鑫, 王昊, 叶坚锴, 等. 燃煤电厂区域颗粒物及颗粒物汞分布特征研究[J/OL]. 环境科学学报: 1-8[2020-07-03]. https://doi.org/10.13671/j.hjkxxb.2020.0058. LI Changxin, WANG Hao, YE Jiankai, et al. Distribution characteristics of particulate matter and mercury in coal-fired power plants[J]. Journal of Environmental Science: 1-8[2020-07-03]. https://doi.org/10.13671/j.hjkxxb.2020.0058. [13] 蒋靖坤, 邓建国, 李振, 等. 固定污染源排气中PM2.5采样方法综述[J]. 环境科学, 2014, 35(5): 2018-2024 JIANG Jingkun, DENG Jianguo, LI Zhen, et al. Sampling methods for PM2.5 from stationary sources: a review[J]. Environmental Science, 2014, 35(5): 2018-2024 [14] US EPA. Method 201 Determination of PM10 emissions (exhaust gas recycle procedure)[S]. [15] US EPA. Method 201A and 202 Methods for measurement of filterable PM10 and PM2.5 and measurement of condensable particular matter emissions from stationary sources[S]. [16] US EPA. Method 201A 40 CFR Part 51 Methods for measurement of filterable PM10 and PM2.5 and measurement of condensable PM emissions from stationary sources: final rule[S]. [17] 朱法华, 李小龙, 段玖祥, 等. 固定污染源排放可凝结颗粒物采样方法综述[J]. 环境监控与预警, 2019, 11(3): 1-5, 11 ZHU Fahua, LI Xiaolong, DUAN Jiuxiang, et al. A review of sampling methods of condensable particulate matter emission from stationary source[J]. Environmental Monitoring and Forewarning, 2019, 11(3): 1-5, 11 [18] 蒋靖坤, 邓建国, 李振, 等. 双级虚拟撞击采样器应用于固定污染源PM10和PM2.5排放测量[J]. 环境科学, 2016, 37(6): 2003-2007 JIANG Jingkun, DENG Jianguo, LI Zhen, et al. Application of a two-stage virtual impactor in measuring of PM10 and PM2.5 emissions from stationary sources[J]. Environmental Science, 2016, 37(6): 2003-2007 [19] 武亚凤. 燃煤污染源排放颗粒物采样器比对及电厂测试应用[D]. 北京: 中国环境科学研究院, 2017. WU Yafeng. Comparison about particles samplers for coal-fired pollution sources and its application in power plants[D]. Beijing: Chinese Academy of Environmental Sciences, 2017. [20] 白云, 魏云鹏, 范立云, 等. 基于键合图高压共轨喷油波动影响的显著性[J]. 内燃机学报, 2020, 38(3): 280-287 BAI Yun, WEI Yunpeng, FAN Liyun, et al. Significance of the fuel injection fluctuation influence for high pressure common rail system based on Bond graph[J]. Transactions of CSICE, 2020, 38(3): 280-287 [21] 赵立正, 孙保民. 湿烟羽形成及其影响因素分析[J]. 动力工程学报, 2020, 40(6): 502-508, 516 ZHAO Lizheng, SUN Baomin. Analysis on factors influencing the control of wet plume[J]. Journal of Chinese Society of Power Engineering, 2020, 40(6): 502-508, 516 [22] 王娴娜, 朱林, 王东歌, 等. 湿式静电除尘技术在燃煤电厂中的应用[J]. 中国电力, 2016, 49(6): 157-160 WANG Xianna, ZHU Lin, WANG Dongge, et al. Application of wet electrostatic precipitator in coal-fired power plants[J]. Electric Power, 2016, 49(6): 157-160 [23] 朱杰, 许月阳, 姜岸, 等. 超低排放下不同湿法脱硫协同控制颗粒物性能测试与研究[J]. 中国电力, 2017, 50(1): 168-172 ZHU Jie, XU Yueyang, JIANG An, et al. Test and study on performance of wet FGD coordinated particulate matter control for ultra-low pollutants emission[J]. Electric Power, 2017, 50(1): 168-172 |
[1] | Xiangguo YIN, Huijuan LIU, Guanyu ZHANG, Yurong MAO, Shiyu GONG. Sampling Loop Test Check Evaluation of Secondary System based on VAE-WSVM Data Mining [J]. Electric Power, 2025, 58(3): 162-167. |
[2] | Wei CUI, Longyue CHAI, Cong WANG, Wei WANG, Ying WANG, Lun YANG. Fast Calculation Method of Probabilistic Optimal Power Flow for Renewable Dominated Power Grid Based on Improved Convex Relaxation [J]. Electric Power, 2024, 57(10): 166-171. |
[3] | Hongjie ZHANG, Guifeng CHEN, Hongwei YAN, Xiaolong YANG, Tianren HOU, Wei ZHANG. Fault Diagnosis of LSTM Network Tansformer Based on SMOTE and Bayes Optimization [J]. Electric Power, 2023, 56(10): 164-170. |
[4] | LIU Hanxiao, WU Liming, ZHAO Lin, YU Liyuan, LI Jianguo, CUI Ying. Study on Emission Reduction and Energy Efficiency Characteristics of Wet Electrostatic Precipitator for Coal Fired Power Plants [J]. Electric Power, 2022, 55(5): 196-203. |
[5] | ZHANG Zhiyong, MO Hua, WANG Meng, SHUAI Wei. Study of Flue Gas Pollutant Control in a 600 MW Coal-Fired Unit [J]. Electric Power, 2022, 55(5): 204-210. |
[6] | WANG Yanzhe, ZHOU Sheng, YAO Zilin, OU Xunmin. Life Cycle Modeling Analysis of the Interaction Between Carbon Dioxide and Air Pollutant Emissions of Coal Power in China [J]. Electric Power, 2021, 54(8): 128-135. |
[7] | ZHU Fahua, XU Yueyang, SUN Zunqiang, SUN Xueli, WANG Sheng. Practice and Enlightenment of Ultra-low Emission and Energy-Saving Retrofit of Coal-Fired Power Plants in China [J]. Electric Power, 2021, 54(4): 1-8. |
[8] | LI Liang, FAN Jin, YAN Lin, ZHANG Mi, WANG Pengfei, ZHAO Xiaojun, XIAO Haibin. Transformer Fault Diagnosis Based on Hybrid Sampling and Support Vector Machines [J]. Electric Power, 2021, 54(12): 150-155. |
[9] | ZHAO Bing, WANG Haigang, HU Dong, CHEN Kunyang, JIN Xuliang, YIN Aiming. Study on Mercury Removal Performance of Alkali Adsorbent in Coal-Fired Power Plant [J]. Electric Power, 2020, 53(9): 208-213. |
[10] | WU Jiayu, ZHU Jie, MO Hua, ZHANG Feng, SHUAI Wei, ZHANG Qing, NA Qin. Test Study on SO3 Control Effect of Slurry Cooling Wet Plume Treatment Project in a Typical Coal-Fired Power Plant [J]. Electric Power, 2020, 53(8): 145-150,172. |
[11] | MA Xueli, SUN Xijin, SU Shenshen, ZHANG Renfeng, DANG Lichen, HUANG Xianchang, XIE Yongping. Optimization of Chimney Height for Coal-Fired Power Plants for Ultra-Low Emission [J]. Electric Power, 2020, 53(5): 179-184. |
[12] | LIU Xiaomin, WANG Lele, HUANG Jianxun, HUANG Rongting, XU Jizhuang, KONG Fanhai, XIE Jiannan, LI Jinjin, YANG Linjun, ZHANG Fajie, HE Chuan. Study on the Emission Characteristics of Organic Components in Condensable Particulate Matter from Low-Low Temperature Electric Precipitator and Sea Water Desulfurization [J]. Electric Power, 2020, 53(12): 263-269. |
[13] | XU Jian, LUO Zhi, ZHOU Xin, LI Wenjie, HUANG Shaobo, CHANG Lei, WANG Xiaobing, NIU Guoping, ZHANG Guangcai. SCR Zone-Based Hybrid Dynamic Leveling Technology and Its Application for W-Flame Boiler [J]. Electric Power, 2020, 53(11): 234-242. |
[14] | WANG Hongliang, XU Yueyang, XUE Jianming, LIU Tao, GUAN Yiming. Comparative Study on the Characteristics of Mercury Emission from Coal-Fired Plants before and after Ultra-Low Emission Retrofitting [J]. Electric Power, 2020, 53(11): 243-251. |
[15] | FANG Zhaojun, FENG Bingquan, PANG Yi, HU Bo, ZHAO Wei. Design of the System for Dry and Wet Sludge Coupling Combustion for the Coal-Fired Boiler [J]. Electric Power, 2020, 53(10): 224-230. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||