Electric Power ›› 2023, Vol. 56 ›› Issue (11): 226-235.DOI: 10.11930/j.issn.1004-9649.202302007
• Energy Conservation and Environmental Protection • Previous Articles Next Articles
Chao YI1(), Da TENG2(
), Shaowei SONG1, Ou CHEN2
Received:
2023-02-01
Accepted:
2023-05-02
Online:
2023-11-23
Published:
2023-11-28
Supported by:
Chao YI, Da TENG, Shaowei SONG, Ou CHEN. Application Analysis of Flue Gas Condensation Recovery in Coal-fired Power Plants by Spraying Method[J]. Electric Power, 2023, 56(11): 226-235.
煤种 | 全水分 Mt/% | 空气干燥基 水分Mad/% | 收到基灰分 Mar/% | 干燥无灰基 挥发分Vdaf/% | 收到基碳 Car/% | 收到基氢 Har/% | 收到基氮 Nar/% | 收到基氧 Oar/% | 全硫 St,ad/% | 高位发热量 Qgr,ar/(MJ·kg–1) | 低位发热量 Qnet,ar/(MJ·kg–1) | |||||||||||
神华煤 | 19.2 | 6.91 | 10.36 | 37.45 | 56.68 | 3.33 | 0.71 | 9.41 | 0.31 | 22.67 | 21.54 | |||||||||||
印尼煤 | 34.6 | 13.98 | 6.56 | 50.82 | 42.40 | 2.84 | 0.65 | 12.62 | 0.33 | 16.89 | 15.51 |
Table 1 The 350 MW coal-fired power plant coal testing analysis table
煤种 | 全水分 Mt/% | 空气干燥基 水分Mad/% | 收到基灰分 Mar/% | 干燥无灰基 挥发分Vdaf/% | 收到基碳 Car/% | 收到基氢 Har/% | 收到基氮 Nar/% | 收到基氧 Oar/% | 全硫 St,ad/% | 高位发热量 Qgr,ar/(MJ·kg–1) | 低位发热量 Qnet,ar/(MJ·kg–1) | |||||||||||
神华煤 | 19.2 | 6.91 | 10.36 | 37.45 | 56.68 | 3.33 | 0.71 | 9.41 | 0.31 | 22.67 | 21.54 | |||||||||||
印尼煤 | 34.6 | 13.98 | 6.56 | 50.82 | 42.40 | 2.84 | 0.65 | 12.62 | 0.33 | 16.89 | 15.51 |
脱硫区 | 脱水区 | |||||||||||||||||||
烟气体积分数/% | 烟气流量/(m3·h–1) | 烟气温度/℃ | 污染物质量浓度/(mg·m–3) | 烟气温度/℃ | ||||||||||||||||
N2 | CO2 | H2O | O2 | SO2 | SO2 | SO3 | 粉尘 | |||||||||||||
71.14 | 12.77 | 11.23 | 4.82 | 0.04 | 1 220 000 | 95 | 1 400 | 20 | 20 | 52.3~52.6 |
Table 2 The flue gas inlet parameters of the integrated system
脱硫区 | 脱水区 | |||||||||||||||||||
烟气体积分数/% | 烟气流量/(m3·h–1) | 烟气温度/℃ | 污染物质量浓度/(mg·m–3) | 烟气温度/℃ | ||||||||||||||||
N2 | CO2 | H2O | O2 | SO2 | SO2 | SO3 | 粉尘 | |||||||||||||
71.14 | 12.77 | 11.23 | 4.82 | 0.04 | 1 220 000 | 95 | 1 400 | 20 | 20 | 52.3~52.6 |
检测项目 | 检测结果 | 检测项目 | 检测结果 | |||
总硬度 | 16.500 | 钙 | 1.800 | |||
溶解性总固体 | 474.000 | 镁 | 0.390 | |||
硫酸盐 | 253.000 | 砷 | 0.400×10–3 | |||
氟化物 | 0.237 | 汞 | <0.040×10–3 | |||
氯化物 | 20.500 | 铬 | <0.030 | |||
硝酸盐 | 0.272 | 铅 | <1.000×10–3 | |||
钾 | 0.230 | 锌 | <9.000×10–3 | |||
钠 | 110.000 | 铜 | <4.000×10–3 | |||
镉 | 0.300×10–3 | 钴 | <0.020 | |||
铁 | 0.470 | 镍 | <7.000×10–3 | |||
锰mg/L | <0.010 | 锑 | <0.070×10–3 |
Table 3 The flue gas condensation water quality analysis from coal-fired power plant 单位:mg/L
检测项目 | 检测结果 | 检测项目 | 检测结果 | |||
总硬度 | 16.500 | 钙 | 1.800 | |||
溶解性总固体 | 474.000 | 镁 | 0.390 | |||
硫酸盐 | 253.000 | 砷 | 0.400×10–3 | |||
氟化物 | 0.237 | 汞 | <0.040×10–3 | |||
氯化物 | 20.500 | 铬 | <0.030 | |||
硝酸盐 | 0.272 | 铅 | <1.000×10–3 | |||
钾 | 0.230 | 锌 | <9.000×10–3 | |||
钠 | 110.000 | 铜 | <4.000×10–3 | |||
镉 | 0.300×10–3 | 钴 | <0.020 | |||
铁 | 0.470 | 镍 | <7.000×10–3 | |||
锰mg/L | <0.010 | 锑 | <0.070×10–3 |
1 | COHEN J, JANOVICH I, MUGINSTEIN A. Utilization of waste heat from a flue gases up-stream gas scrubbing system[J]. Desalination, 2001, 139 (1/2/3): 1- 6. |
2 | 赵宁, 冯永新, 林廷坤, 等. 脱硫废水旋转喷雾蒸发与旁路烟道蒸发特性研究[J]. 中国电力, 2022, 55 (7): 193- 200. |
ZHAO Ning, FENG Yongxin, LIN Tingkun, et al. Study of evaporation performance between centrifugal spray evaporation and bypass flue evaporation to treat desulfurization wastewater[J]. Electric Power, 2022, 55 (7): 193- 200. | |
3 |
XIONG Y Y, NIU Y Q, TAN H Z, et al. Experimental study of a zero water consumption wet FGD system[J]. Applied Thermal Engineering, 2014, 63 (1): 272- 277.
DOI |
4 | 高原, 辛志强, 姜涌. 余热回收装置对湿法烟气脱硫系统水量平衡影响分析[J]. 电站系统工程, 2013, 29 (3): 77- 78. |
GAO Yuan, XIN Zhiqiang, JIANG Yong. Influence analysis of waste heat recovery on water balance of wet-FGD system[J]. Power System Engineering, 2013, 29 (3): 77- 78. | |
5 | SHUSTER E, HOESLY R, PIZEL A, et al. Estimating fresh water needs to meet future thermoelectric generation requirements and program water saving benefits–2022 update[R]. United Sates: Nation Energy Technology Laboratory, 2006. |
6 |
HAN X Q, YAN J J, KARELLAS S, et al. Water extraction from high moisture lignite by means of efficient integration of waste heat and water recovery technologies with flue gas pre-drying system[J]. Applied Thermal Engineering, 2017, 110, 442- 456.
DOI |
7 | 朱晓磊, 张磊, 孟继安. 烟气余热回收中填料喷淋换热器的实验分析[J]. 工程热物理学报, 2020, 41 (12): 3061- 3067. |
ZHU Xiaolei, ZHANG Lei, MENG Jian. Experimental analysis of packed spraying heat exchanger in waste heat recovery from flue gas[J]. Journal of Engineering Thermophysics, 2020, 41 (12): 3061- 3067. | |
8 |
徐承美, 谢英柏, 弓学敏. 燃煤锅炉烟气余热利用途径分析[J]. 热能动力工程, 2020, 35 (8): 151- 157.
DOI |
XU Chengmei, XIE Yingbai, GONG Xuemin. Analysis on waste heat utilization way of flue gas in coal-fired boiler[J]. Journal of Engineering for Thermal Energy and Power, 2020, 35 (8): 151- 157.
DOI |
|
9 |
路源, 徐震, 肖云汉. 开式吸收式热泵内冷型吸收器的实验研究[J]. 太阳能学报, 2012, 33 (3): 368- 373.
DOI |
LU Yuan, XU Zhen, XIAO Yunhan. Experimental study on the internally-cooled absorber in open cycle absorption heat pump[J]. Acta Energiae Solaris Sinica, 2012, 33 (3): 368- 373.
DOI |
|
10 |
ZHANG H, DONG Y, LAI Y H, et al. Waste heat recovery from coal-fired boiler flue gas: performance optimization of a new open absorption heat pump[J]. Applied Thermal Engineering, 2021, 183, 116111.
DOI |
11 |
陈海平, 谢天, 杨博然, 等. 火电厂烟气水分及余热陶瓷膜法回收实验[J]. 热力发电, 2018, 47 (11): 46- 52.
DOI |
CHEN Haiping, XIE Tian, YANG Boran, et al. Water and waste heat recovery from flue gas of thermal power plants: using ceramic membrane method[J]. Thermal Power Generation, 2018, 47 (11): 46- 52.
DOI |
|
12 |
CHENG C, LIANG D H, ZHANG Y T, et al. Pilot-scale study on flue gas moisture recovery in a coal-fired power plant[J]. Separation and Purification Technology, 2021, 254, 117254.
DOI |
13 |
RIFFAT S B, ZHAO X, DOHERTY P S. Application of sorption heat recovery systems in heating appliances-feasibility study[J]. Applied Thermal Engineering, 2006, 26 (1): 46- 55.
DOI |
14 | 周亚男. 水蒸气在复合膜中的跨膜传质传热机理研究[D]. 北京: 华北电力大学(北京), 2018. |
ZHOU Yanan. Mechanism of mass and heat transfer for water vapor transporting through composite membranes[D]. Beijing: North China Electric Power University, 2018. | |
15 |
包文运, 马利君, 赵晓丹, 等. 膜法除湿技术研究进展及应用现状[J]. 应用化工, 2019, 48 (6): 1428- 1432.
DOI |
BAO Wenyun, MA Lijun, ZHAO Xiaodan, et al. Research progress and application of membrane dehumidification technology[J]. Applied Chemical Industry, 2019, 48 (6): 1428- 1432.
DOI |
|
16 |
CHEN H P, ZHOU Y N, SU X, et al. Experimental study of water recovery from flue gas using hollow micro–nano porous ceramic composite membranes[J]. Journal of Industrial and Engineering Chemistry, 2018, 57, 349- 355.
DOI |
17 |
LIANG Y B, CHE D F, KANG Y B. Effect of vapor condensation on forced convection heat transfer of moistened gas[J]. Heat and Mass Transfer, 2007, 43 (7): 677- 686.
DOI |
18 |
WEI H Y, HUANG S F, ZHANG X S. Experimental and simulation study on heat and mass transfer characteristics in direct-contact total heat exchanger for flue gas heat recovery[J]. Applied Thermal Engineering, 2022, 200, 117657.
DOI |
19 |
THIYAGU S, NAVEEN T K, SIDDHARTHAN B, et al. Numerical investigation and performance enhancement of 210 MW boiler by utilization of waste heat in flue gas[J]. Materials Today:Proceedings, 2020, 33, 756- 762.
DOI |
20 | 张志勇, 莫华, 王猛, 等. 600 MW燃煤机组烟气污染物控制研究[J]. 中国电力, 2022, 55 (5): 204- 210. |
ZHANG Zhiyong, MO Hua, WANG Meng, et al. Study of flue gas pollutant control in a 600MW coal-fired unit[J]. Electric Power, 2022, 55 (5): 204- 210. | |
21 |
PAN P Y, CHEN H, LIANG Z Y, et al. Deposition and corrosion characteristics of liquid-solid droplets on tubular corrosion probes in desulfurized flue gas[J]. Engineering Failure Analysis, 2018, 90, 129- 140.
DOI |
22 |
VERMA P, YANG Z W. A direct contact cooler design for simultaneously recovering latent heat and capturing SOx and NOx from pressurized flue gas [J]. Energy Conversion and Management, 2022, 254, 115216.
DOI |
23 | 李锋, 端木琳, 付林, 等. 烟气-水直接接触式换热性能研究[J]. 暖通空调, 2017, 47 (12): 91- 96. |
LI Feng, DUANMU Lin, FU Lin, et al. Flue gas-water direct-contact heat transfer performances[J]. Heating Ventilating & Air Conditioning, 2017, 47 (12): 91- 96. | |
24 | 马文嘉. 富氧燃烧电站直接接触式烟气冷凝器系统研究[D]. 武汉: 华中科技大学, 2016. |
MA Wenjia. Research on oxy-fuel combustion power station with direct contact flue gas condenser system[D]. Wuhan: Huazhong University of Science and Technology, 2016. | |
25 | 范立民, 寇贵德, 侯飞龙. 榆神低硫煤中硫含量特征及成因探讨[J]. 中国煤炭地质, 2003, 15 (2): 12- 13. |
FAN Limin, KOU Guide, HOU Feilong. Probe into features and geneses of sulfur content in low-sulfur coal of yushen mining area[J]. Coal Geology of China, 2003, 15 (2): 12- 13. | |
26 |
杨建国, 许明路, 陈永辉, 等. 燃煤电厂烟气冷凝法水回收试验研究[J]. 动力工程学报, 2020, 40 (4): 342- 348.
DOI |
YANG Jianguo, XU Minglu, CHEN Yonghui, et al. Experimental study on water recovery from flue gas condensation in coal fired power plants[J]. Journal of Chinese Society of power Engineering, 2020, 40 (4): 342- 348.
DOI |
|
27 | 王述浩, 李水清, 段璐, 等. 相变凝聚器内蒸汽凝结与细颗粒团聚规律研究[J]. 中国电机工程学报, 2017, 37 (24): 7230- 7236, 7437. |
WANG Shuhao, LI Shuiqing, DUAN Lu, et al. Study on the coagulation of vapor condensates and fine particulates in a phase-change agglomerator[J]. Proceedings of the CSEE, 2017, 37 (24): 7230- 7236, 7437. | |
28 |
熊英莹, 王自宽, 张方炜, 等. 零水耗烟气湿法脱硫系统试验研究[J]. 热力发电, 2014, 43 (3): 43- 46, 51.
DOI |
XIONG Yingying, WANG Zikuan, ZHANG Fangwei, et al. Experimental study on a zero water consumption FGD system[J]. Thermal Power Generation, 2014, 43 (3): 43- 46, 51.
DOI |
|
29 |
雷承勇, 王恩禄, 黄晓宇, 等. 燃煤电站烟气水分回收技术试验研究[J]. 锅炉技术, 2011, 42 (1): 5- 8, 22.
DOI |
LEI Chengyong, WANG Enlu, HUANG Xiaoyu, et al. Experiment study on recovery of water steam in the flue gas of brown coal-fired power plant[J]. Boiler Technology, 2011, 42 (1): 5- 8, 22.
DOI |
|
30 |
杨亦擎, 姜未汀, 潘卫国, 等. 基于泡沫铜翅片换热器的烟气水分回收实验研究[J]. 热能动力工程, 2020, 35 (2): 213- 218.
DOI |
YANG Yiqing, JIANG Weiting, PAN Weiguo, et al. Experimental study on flue gas moisture recovery based on foamed copper fin heat exchanger[J]. Journal of Engineering for Thermal Energy and Power, 2020, 35 (2): 213- 218.
DOI |
|
31 |
TENG D, JIA X X, YANG W K, et al. Experimental investigation into flue gas water and waste heat recovery using a purge gas ceramic membrane condenser[J]. ACS Omega, 2022, 7 (6): 4956- 4969.
DOI |
32 |
TENG D, AN L S, SHEN G Q, et al. Experimental study on a ceramic membrane condenser with air medium for water and waste heat recovery from flue gas[J]. Membranes, 2021, 11 (9): 701.
DOI |
33 | 高兴林. 火电厂烟气排放流量实时测量装置研究[D]. 北京: 华北电力大学(北京), 2019. |
GAO Xinglin. Research on real-time measuring device for flue gas emission flow in power plant[D]. Beijing: North China Electric Power University, 2019. | |
34 |
俞峰苹, 李清毅, 赵金龙, 等. 选择性催化还原烟气脱硝系统烟气流量在线测量方法[J]. 热力发电, 2016, 45 (2): 101- 104, 109.
DOI |
YU Fengping, LI Qingyi, ZHAO Jinlong, et al. Online measurement methods for flue gas flow in SCR denitrification system[J]. Thermal Power Generation, 2016, 45 (2): 101- 104, 109.
DOI |
|
35 |
谢春霞, 邹向群. 回用水用于湿法脱硫系统工艺水的水质要求[J]. 电力科技与环保, 2013, 29 (2): 23- 25.
DOI |
XIE Chunxia, ZOU Xiangqun. Water quality specification of reclaimed water used as process water of flue gas desulphurization system[J]. Electric Power Technology and Environmental Protection, 2013, 29 (2): 23- 25.
DOI |
[1] | ZHANG Guozhu, ZHANG Juntai, WEN Yu, YANG Kaixuan, LIU Ming, LIU Jiping. Study on Off-design Condition Characteristics and Control Strategy of Fluegas Waste Heat and Water Recovery System of Coal-Fired Power Plants [J]. Electric Power, 2022, 55(4): 214-220. |
[2] | SUN Zunqiang, ZHENG Chenghang, ZHOU Can, WANG Sheng, MA Xiuyuan, YE Yike. Operational Status Analysis and Optimization Suggestions of Typical Dust Collectors in Coal-Fired Power Plants [J]. Electric Power, 2022, 55(11): 194-201. |
[3] | WU Jiayu, MO Hua, HU Yun, ZHU Jie, SHUAI Wei, ZHANG Qing, JIANG An. Spatio-Temporal Variation Characteristics of Fugitive Particulate Matter Emissions from the Coal Storage Yard of Coal-Fired Power Plants in Beijing-Tianjin-Hebei and Surrounding Areas under Different Regulatory Scenarios [J]. Electric Power, 2021, 54(2): 182-189. |
[4] | ZHAO Hong, ZHANG Fajie, MA Yunlong, MA Baolin, TANG Xiao, XU Renbo, LUO Tongda, LI Chengbao, REN Chuanming, YU Jie, SUN Lushi. Test Study on the Migration Characteristics of Slip Ammonia from the SCR System in the Coal-Fired Power Plant [J]. Electric Power, 2021, 54(1): 196-202. |
[5] | ZHAO Bing, WANG Haigang, HU Dong, CHEN Kunyang, JIN Xuliang, YIN Aiming. Study on Mercury Removal Performance of Alkali Adsorbent in Coal-Fired Power Plant [J]. Electric Power, 2020, 53(9): 208-213. |
[6] | JIA Xibu. In-depth Analysis on Wastewater Discharge of Wet Limestone-Gypsum FGD [J]. Electric Power, 2020, 53(8): 139-144,163. |
[7] | MA Xueli, SUN Xijin, SU Shenshen, ZHANG Renfeng, DANG Lichen, HUANG Xianchang, XIE Yongping. Optimization of Chimney Height for Coal-Fired Power Plants for Ultra-Low Emission [J]. Electric Power, 2020, 53(5): 179-184. |
[8] | LU Junchao, TAO Leixing, YUE Chunmei, CHEN Rui, LIU Zhichao, WANG Yanyan, ZHENG Fangdong, WAN Di. The Present State and Prospect of Water Consumption in Coal-Fired Power Plants [J]. Electric Power, 2020, 53(3): 139-146. |
[9] | XU Jingxin, ZHU Fahua, WANG Sheng, ZHANG Ming, ZHAO Xiuyong, SUN Xueli, HU Yun, TIAN Wenxin. Comprehensive Comparison of Ultra-low Emission Coal-Fired Power Plants and Gas-Fired Power Plants [J]. Electric Power, 2020, 53(2): 164-172,179. |
[10] | LI Bin, YANG Yang. The Controlled Condensation Method for the Sampling of SO3 in the Flue Gas [J]. Electric Power, 2020, 53(1): 140-146. |
[11] | WANG Wenxin, GAO Yi, LIU Chunhong, TONG Xiaozhong, CHEN Biao, QI Zhifu, ZHANG Qin. Development of Control Technology for Bypass Flue Gas Drying Tower of Coal-Fired Power Plant [J]. Electric Power, 2020, 53(1): 147-154. |
[12] | TANG Weifeng, ZHANG Jiaqi, LI Fei. Experimental Study of Non-phosphorus Scale Inhibitor WS330 for the Seawater Cooling System [J]. Electric Power, 2019, 52(9): 161-166,178. |
[13] | LEI Siyuan, LI Haihao, LI Letian, NI Guidong, KONG Fanhai, WU Guoxun, BIAN Zijun. Design for Modification of Flue Gas Temperature Adjustment Bypass for SCR Denitrification System under Low Load Operation Conditions [J]. Electric Power, 2019, 52(9): 179-184. |
[14] | XU Jian, XIA Xiaofei, LI Kailun, ZHENG Jin, WANG Xing, MA Xiang. Mechanism Analysis and Treatment of Blade Passing Frequency Vibration for Axial Induced Draft Fans in Power Plant [J]. Electric Power, 2019, 52(7): 117-122. |
[15] | CHEN Haijie, MA Wu, LIU Gongyi, GAO Pan. Study on SNCR Denitration of W-flame Boiler and Its Effect on the Flow Field of SCR Inlet Section [J]. Electric Power, 2019, 52(7): 146-153. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||