[1] 牟春华, 居文平, 黄嘉驷, 等. 火电机组灵活性运行技术综述与展望[J]. 热力发电, 2018, 47(5):1-7 MU Chunhua, JU Wenping, HUANG Jiasi, et al. Review and prospect of technologies of enhancing the flexibility of thermal power units[J]. Thermal Power Generation, 2018, 47(5):1-7 [2] 李俊华, 杨恂, 常化振. 烟气催化脱硝关键技术研发及应用[M]. 北京:科学出版社, 2015. [3] 马双忱, 金鑫, 孙云雪, 等. SCR烟气脱硝过程硫酸氢铵的生成机理与控制[J]. 热力发电, 2010, 39(8):12-17 MA Shuangchen, JIN Xin, SUN Yunxue, et al. The formation mechanism of ammonium bisulfate in SCR flue gas denitrification process and control thereof[J]. Thermal Power Generation, 2010, 39(8):12-17 [4] 马双忱, 郭蒙, 宋卉卉, 等. 选择性催化还原工艺中硫酸氢铵形成机理及影响因素[J]. 热力发电, 2014, 43(2):75-78, 86 MA Shuangchen, GUO Meng, SONG Huihui, et al. Formation mechanism and influencing factors of ammonium bisulfate during the selective catalytic reduction process[J]. Thermal Power Generation, 2014, 43(2):75-78, 86 [5] 宋玉宝, 刘鑫辉, 何川, 等. SCR催化剂低负荷运行硫酸氢铵失活研究[J]. 中国电力, 2019, 52(1):144-150 SONG Yubao, LIU Xinhui, HE Chuan, et al. Study on the ammonium bisulfate deactivated SCR catalyst at low load operation[J]. Electric Power, 2019, 52(1):144-150 [6] MAISUDA S, KAMO T, KATO A, et al. Deposition of ammonium bisulfate in the selective catalytic reduction of nitrogen oxides with ammonia[J]. Industrial & Engineering Chemistry Product Research & Development, 1982, 21(1):48-52. [7] SHI Y J, SHU H, ZHANG Y H, et al. Formation and decomposition of NH4HSO4 during selective catalytic reduction of NO with NH3 over V2O5-WO3/TiO2 catalysts[J]. Fuel Processing Technology, 2016, 150:141-147. [8] SONG L, CHAO J, FANG Y, et al. Promotion of ceria for decomposition of ammonia bisulfate over V2O5-MoO3/TiO2 catalyst for selective catalytic reduction[J]. Chemical Engineering Journal, 2016, 303:275-281. [9] QU R, DONG Ye, ZHENG C, et al. Exploring the role of V2O5 in the reactivity of NH4HSO4 with NO on V2O5/TiO2 SCR catalysts[J]. RSC Advances, 2016, 6(104):102436-102443. [10] 谢尉扬. 提高SCR反应器入口烟气温度的技术方法[J]. 中国电力, 2015, 48(4):36-39, 43 XIE Weiyang. Technical measures to raise the inlet flue gas temperature of SCR reactor[J]. Electric Power, 2015, 48(4):36-39, 43 [11] 王乐乐, 孔凡海, 何金亮, 等. 超低排放形式下SCR脱硝系统运行存在的问题与对策[J]. 热力发电, 2016, 45(12):19-24 WANG Lele, KONG Fanhai, HE Jinliang, et al. Difficulties and countermeasures of SCR denitration system operation in ultra low emission situation[J]. Thermal Power Generation, 2016, 45(12):19-24 [12] 梁颖. SCR维护与保养-催化剂管理[C]//2015年脱硝催化剂业主大会及技术交流会. 上海, 2015. [13] 姚宣, 郑鹏, 郑伟. SCR脱硝系统最低连续喷氨温度的研究[J]. 中国电力, 2016, 49(1):146-150 YAO Xuan, ZHENG Peng, ZHENG Wei. Study on minimum continuous-operation temperature of SCR system[J]. Electric Power, 2016, 49(1):146-150 [14] 雷嗣远, 孔凡海, 王乐乐, 等. 燃煤电厂SCR脱硝催化剂磨损诊断及对策研究[J]. 中国电力, 2018, 51(1):158-163 LEI Siyuan, KONG Fanhai, WAHG Lele, et al. Diagnosis and countermeasures of scr denitration catalyst abrasion in coal-fired power plants[J]. Electric Power, 2018, 51(1):158-163 [15] WILHITE D C. The use of computational fluid dynamics(CFD) in selective reduction system ductwork design[C]//Proceedings of the ASME Fluids Engineering Division. New York, 1998:247−248. [16] XU Yuanyuan, ZHANG Yan, LIU Fengna, et al. CFD analysis on the catalyst layer breakage failure of an SCR-DeNOx system for a 350 MW coal-fired power plant[J]. Computers & Chemical Engineering, 2014, 69:119-127. [17] 方朝君. 华润电力(海丰)有限公司2号机组喷氨优化与性能评估试验报告[R]. 西安:西安热工研究院有限公司, 2015. [18] 王乐乐. 华能嘉祥发电有限公司2号机组SCR脱硝性能考核试验报告[R]. 西安:西安热工研究院有限公司, 2015. [19] 王乐乐, 宋玉宝, 杨晓宁, 等. 火电厂SCR运行性能诊断技术[J]. 热力发电, 2014, 43(10):95-99 WANG Lele, SONG Yubao, YANG Xiaoning, et al. A performance diagnostic technology for SCR equipments in power plants[J]. Thermal Power Generation, 2014, 43(10):95-99 [20] 罗江勇, 吕新乐. 锅炉低负荷工况下脱硝系统投运率提高的改造技术[J]. 中国电力, 2015, 48(11):138-141 LUO Jiangyong, LV Xinle. Retrofit for SCR equipment operation rate improvement under low load conditions on 600-MW supercritical boiler[J]. Electric Power, 2015, 48(11):138-141 [21] 章斐然, 周克毅, 徐奇, 等. 燃煤机组低负荷运行SCR烟气脱硝系统应对措施[J]. 热力发电, 2016, 45(7):78-83 ZHANG Feiran, ZHOU Keyi, XU Qi, et al. Countermeasures for SCR denitration system of coal-fired unit during low-load operation[J]. Thermal Power Generation, 2016, 45(7):78-83
|