Electric Power ›› 2023, Vol. 56 ›› Issue (11): 206-216.DOI: 10.11930/j.issn.1004-9649.202209073
• New Energy • Previous Articles Next Articles
Jiguang KANG1(), Jiehua JU1, Yanmin ZHAO1, Yutong ZHAO1, Xuetao BAI2, Yingru ZHAO2(
), Rui JING2(
)
Received:
2022-09-19
Accepted:
2022-12-18
Online:
2023-11-23
Published:
2023-11-28
Supported by:
Jiguang KANG, Jiehua JU, Yanmin ZHAO, Yutong ZHAO, Xuetao BAI, Yingru ZHAO, Rui JING. Integrated Energy System Optimization Considering EnergyCommunities with Prosumers[J]. Electric Power, 2023, 56(11): 206-216.
碳排放因子/(kg·(kW·h)–1) | ||
天然气 | 电网电能 | |
0.18 | 0.94 |
Table 1 Environmental parameters
碳排放因子/(kg·(kW·h)–1) | ||
天然气 | 电网电能 | |
0.18 | 0.94 |
热电联产机组 | 燃气锅炉 | 热泵 | ||||
发电效率/% | 热电比 | 热效率/% | 性能系数 | |||
42 | 0.9 | 90 | 4.5 | |||
电制冷机组 | 吸收式制冷机组 | 电池储能系统 | ||||
性能系数 | 性能系数 | 充电效率 | 放电效率 | |||
3.0 | 0.9 | 0.98 | 0.98 |
Table 2 Major technical parameters
热电联产机组 | 燃气锅炉 | 热泵 | ||||
发电效率/% | 热电比 | 热效率/% | 性能系数 | |||
42 | 0.9 | 90 | 4.5 | |||
电制冷机组 | 吸收式制冷机组 | 电池储能系统 | ||||
性能系数 | 性能系数 | 充电效率 | 放电效率 | |||
3.0 | 0.9 | 0.98 | 0.98 |
设备 | 投资成本/(元·kW–1) | 年维护成本/(元·kW–1) | ||
热电联产机组 | 4900 | 0.03250 | ||
燃气锅炉 | 800 | 0.00195 | ||
热泵 | 1200 | 0.00800 | ||
电制冷机组 | 1000 | 0.00200 | ||
吸收式制冷机组 | 1500 | 0.00130 | ||
光伏系统 | 4000 | 0.01200 | ||
电池储能系统 | 1800 | 0.00230 |
Table 3 Equipment investment and operation & maintenance cost
设备 | 投资成本/(元·kW–1) | 年维护成本/(元·kW–1) | ||
热电联产机组 | 4900 | 0.03250 | ||
燃气锅炉 | 800 | 0.00195 | ||
热泵 | 1200 | 0.00800 | ||
电制冷机组 | 1000 | 0.00200 | ||
吸收式制冷机组 | 1500 | 0.00130 | ||
光伏系统 | 4000 | 0.01200 | ||
电池储能系统 | 1800 | 0.00230 |
时段 | 购电价格/(元·(kW·h)–1) | 售电价格/(元·(kW·h)–1) | ||
00:00—06:00 | 0.39 | 0.35 | ||
06:00—08:00 | 0.75 | 0.52 | ||
08:00—11:00 | 0.98 | 0.52 | ||
11:00—15:00 | 1.16 | 0.62 | ||
15:00—18:00 | 0.98 | 0.52 | ||
18:00—22:00 | 1.16 | 0.62 | ||
22:00—24:00 | 0.39 | 0.35 |
Table 4 Time of use tariff for purchasing and selling electricity
时段 | 购电价格/(元·(kW·h)–1) | 售电价格/(元·(kW·h)–1) | ||
00:00—06:00 | 0.39 | 0.35 | ||
06:00—08:00 | 0.75 | 0.52 | ||
08:00—11:00 | 0.98 | 0.52 | ||
11:00—15:00 | 1.16 | 0.62 | ||
15:00—18:00 | 0.98 | 0.52 | ||
18:00—22:00 | 1.16 | 0.62 | ||
22:00—24:00 | 0.39 | 0.35 |
Fig.5 Electricity demand, PV output and state of charge before & after energy trading in a typical scenario and corresponding hourly electricity selling price, electricity purchasing price & intra-community electricity trading price
1 | BP中国. BP世界能源统计年鉴: 2021[EB/OL]. 70版. (2022-06-10)[2021-07-08].https://www.bp.com.cn/zh_cn/china/home/news/reports/statistical-review-2021.html. |
2 | 新华社. 中华人民共和国国民经济和社会发展第十四个五年规划和2035年远景目标纲要[EB/OL]. (2022-06-08)[2021-03-13]. http://www.gov.cn/xinwen/2021-03/13/content_5592681.htm. |
3 | 国务院. 2030年前碳达峰行动方案[EB/OL]. (2022-06-09)[2021-10-26]. http://www.gov.cn/zhengce/content/2021-10/26/content_5644984.htm. |
4 | 谭俊丰, 杨苹, 张凡, 等. 考虑能量-辅助服务下的园区综合能源系统多时间尺度优化模型[J]. 中国电力, 2022, 55 (10): 100- 111. |
TAN Junfeng, YANG Ping, ZHANG Fan, et al. Multi-time scale optimization dispatch model of integrated energy system considering energy-auxiliary services[J]. Electric Power, 2022, 55 (10): 100- 111. | |
5 | 张海静, 杨雍琦, 赵昕, 等. 计及需求响应的区域综合能源系统双层优化调度策略[J]. 中国电力, 2021, 54 (4): 141- 150. |
ZHANG Haijing, YANG Yongqi, ZHAO Xin, et al. Two-level optimal dispatching strategy for regional integrated energy system considering demand response[J]. Electric Power, 2021, 54 (4): 141- 150. | |
6 |
SIDDIQUI O, DINCER I. Design and analysis of a novel solar-wind based integrated energy system utilizing ammonia for energy storage[J]. Energy Conversion and Management, 2019, 195, 866- 884.
DOI |
7 |
JENNINGS M, FISK D, SHAH N. Modelling and optimization of retrofitting residential energy systems at the urban scale[J]. Energy, 2014, 64, 220- 233.
DOI |
8 | 翟晶晶, 吴晓蓓, 傅质馨, 等. 考虑需求响应与光伏不确定性的综合能源系统鲁棒优化[J]. 中国电力, 2020, 53 (8): 9- 18. |
ZHAI Jingjing, WU Xiaobei, FU Zhixin, et al. Robust optimization of integrated energy systems considering demand response and photovoltaic uncertainty[J]. Electric Power, 2020, 53 (8): 9- 18. | |
9 |
PRUITT K A, BRAUN R J, NEWMAN A M. Evaluating shortfalls in mixed-integer programming approaches for the optimal design and dispatch of distributed generation systems[J]. Applied Energy, 2013, 102, 386- 398.
DOI |
10 |
ALI SHAABANI Y, SEIFI A R, KOUHANJANI M J. Stochastic multi-objective optimization of combined heat and power economic/emission dispatch[J]. Energy, 2017, 141, 1892- 1904.
DOI |
11 |
JING R, WANG M, ZHANG Z H, et al. Distributed or centralized? Designing district-level urban energy systems by a hierarchical approach considering demand uncertainties[J]. Applied Energy, 2019, 252, 113424.
DOI |
12 |
MAVROMATIDIS G, OREHOUNIG K, BOLLINGER L A, et al. Ten questions concerning modeling of distributed multi-energy systems[J]. Building and Environment, 2019, 165, 106372.
DOI |
13 |
LODE M L, TE BOVELDT G, COOSEMANS T, et al. A transition perspective on Energy Communities: a systematic literature review and research agenda[J]. Renewable and Sustainable Energy Reviews, 2022, 163, 112479.
DOI |
14 |
MENGELKAMP E, GÄRTTNER J, ROCK K, et al. Designing microgrid energy markets[J]. Applied Energy, 2018, 210, 870- 880.
DOI |
15 |
TUSHAR W, YUEN C, SAHA T K, et al. Peer-to-peer energy systems for connected communities: a review of recent advances and emerging challenges[J]. Applied Energy, 2021, 282, 116131.
DOI |
16 |
YAN Y M, YAN J, SONG M J, et al. Design and optimal siting of regional heat-gas-renewable energy system based on building clusters[J]. Energy Conversion and Management, 2020, 217, 112963.
DOI |
17 |
ZHANG X N, BAO J, WANG R G, et al. Dissipativity based distributed economic model predictive control for residential microgrids with renewable energy generation and battery energy storage[J]. Renewable Energy, 2017, 100, 18- 34.
DOI |
18 | 胡洋, 周长城, 马溪原, 等. P2P模式下产消者交易模型建立与仿真验证[J]. 中国电力, 2019, 52 (11): 44- 50. |
HU Yang, ZHOU Changcheng, MA Xiyuan, et al. Establishment and simulation of prosumers transaction model in P2P mode[J]. Electric Power, 2019, 52 (11): 44- 50. | |
19 |
KHORASANY M, RAZZAGHI R, SHOKRI GAZAFROUDI A. Two-stage mechanism design for energy trading of strategic agents in energy communities[J]. Applied Energy, 2021, 295, 117036.
DOI |
20 | ZHOU S Y, ZOU F H, WU Z, et al. A smart community energy management scheme considering user dominated demand side response and P2P trading[J]. International Journal of Electrical Power & Energy Systems, 2020, 114, 105378. |
21 |
ZHOU Y, WU J Z, SONG G Y, et al. Framework design and optimal bidding strategy for ancillary service provision from a peer-to-peer energy trading community[J]. Applied Energy, 2020, 278, 115671.
DOI |
22 |
WEN L L, ZHOU K L, LI J, et al. Modified deep learning and reinforcement learning for an incentive-based demand response model[J]. Energy, 2020, 205, 118019.
DOI |
23 |
WANG M, YU H, JING R, et al. Combined multi-objective optimization and robustness analysis framework for building integrated energy system under uncertainty[J]. Energy Conversion and Management, 2020, 208, 112589.
DOI |
24 |
LI M, MU H L, LI N, et al. Optimal design and operation strategy for integrated evaluation of CCHP (combined cooling heating and power) system[J]. Energy, 2016, 99, 202- 220.
DOI |
25 | CEA. City Energy Analyst V3.27. 0[EB/OL] (2022-04-10)[2022-02-01].https://www.cityenergyanalyst.com/try-cea. |
[1] | Yumin ZHANG, Yanbin Yin, Xingquan JI, Pingfeng YE, Donglei SUN, Aiquan SONG. Optimal Dispatch of Integrated Electric-Heat Energy System Considering Supply Flexibility of Heat Networks Under Different Operation States [J]. Electric Power, 2025, 58(2): 88-102. |
[2] | Yunlong WANG, Lu HAN, Shulin LUO, Tao WU. Load Scheduling Optimization of Home Electric Heating Integrated Energy System with Electric Vehicle [J]. Electric Power, 2024, 57(5): 39-49. |
[3] | Zhipeng LV, Zhenhao SONG, Lisheng LI, Yang LIU. Optimization Scheduling of Integrated Energy System Scheduling in Industrial Park containing Electric Vehicles [J]. Electric Power, 2024, 57(4): 25-31. |
[4] | Yi QI, Jing ZHANG, Jing LIU, Shengnan WEI, Yanling WANG, Zhaohao DING. A Spot Price Limit Adaptive Model Considering the Impact Layer Under the Risk of New Energy Entering the Market [J]. Electric Power, 2024, 57(11): 94-101. |
[5] | WANG Yanru, YIN Xiyang, OU Qinghai, MA Wenjie, LIU Hui, DU Zhigang. Energy Storage Regulation Method of Base Stations in 5G Integrated Distribution Network Based on Energy Sharing and Trading Coordination [J]. Electric Power, 2023, 56(6): 61-70. |
[6] | GUO Zhidong, HU Cungang, RUI Tao, LUO Kui, LIN Zhenfeng. User Side Distributed Energy Storage Trading Strategy Based on Dynamic Electricity Price Mechanism [J]. Electric Power, 2023, 56(1): 28-37. |
[7] | CHEN Peiyu, CHONG Zhiqiang, LI Shuqing, XI Xiaoguang, LI Zhenbin, WANG Huiyuan. A Control Algorithm Based on Two-Stage Aggregation for P2P Energy Trading in Community Microgrids [J]. Electric Power, 2022, 55(9): 64-69. |
[8] | ZHANG Xudong, LI Fei, LIU Di, SUN Yi, LI Bin. CNN-based Rolling Optimization Strategy for Prosumer Group in Demand Response [J]. Electric Power, 2021, 54(2): 78-89. |
[9] | HU Yang, ZHOU Changcheng, MA Xiyuan, YUAN Zhiyong, LEI Jinyong, TIAN Bing, SHAN Junjia, HU Junjie. Establishment and Simulation of Prosumers Transaction Model in P2P Mode [J]. Electric Power, 2019, 52(11): 44-50. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||