Electric Power ›› 2024, Vol. 57 ›› Issue (11): 36-47.DOI: 10.11930/j.issn.1004-9649.202308114
• Power System • Previous Articles Next Articles
Dan LI1(), Shuai HE1(
), Wei YAN2, Yue HU3, Zeren FANG3, Yunyan LIANG3
Received:
2023-08-28
Accepted:
2023-11-26
Online:
2024-11-23
Published:
2024-11-28
Supported by:
Dan LI, Shuai HE, Wei YAN, Yue HU, Zeren FANG, Yunyan LIANG. Annual Daily Average Load Curve Prediction Considering Dynamic Time Anchors and Typical Feature Constraints[J]. Electric Power, 2024, 57(11): 36-47.
方法 | 2020 | 2021 | 平均指标 | |||||||||||||||
EMAPE/% | ERMSE/MW | R2 | EMAPE/% | ERMSE/MW | R2 | EMAPE/% | ERMSE/MW | R2 | ||||||||||
Holt-Winters | 14.47 | 0.28 | 8.51 | 0.44 | 11.49 | 0.36 | ||||||||||||
GM | 12.45 | 0.32 | 11.28 | 0.06 | 11.86 | 0.19 | ||||||||||||
Naive | 12.00 | 0.34 | 11.74 | –0.09 | 11.87 | 0.13 | ||||||||||||
ED | 11.98 | 0.4 | 8.32 | 0.36 | 10.15 | 0.38 | ||||||||||||
DBA | 12.32 | 0.35 | 8.56 | 0.32 | 10.44 | 0.34 | ||||||||||||
SGD-DBA | 12.17 | 0.37 | 8.51 | 0.34 | 10.34 | 0.36 | ||||||||||||
Soft-DDBA | 11.10 | 0.54 | 7.90 | 0.49 | 9.50 | 0.52 | ||||||||||||
FC-DTA-Soft-DBA | 6.87 | 0.77 | 6.79 | 0.41 | 6.83 | 0.59 |
Table 1 Evaluating indicator comparison of different methods for 2020 and 2021
方法 | 2020 | 2021 | 平均指标 | |||||||||||||||
EMAPE/% | ERMSE/MW | R2 | EMAPE/% | ERMSE/MW | R2 | EMAPE/% | ERMSE/MW | R2 | ||||||||||
Holt-Winters | 14.47 | 0.28 | 8.51 | 0.44 | 11.49 | 0.36 | ||||||||||||
GM | 12.45 | 0.32 | 11.28 | 0.06 | 11.86 | 0.19 | ||||||||||||
Naive | 12.00 | 0.34 | 11.74 | –0.09 | 11.87 | 0.13 | ||||||||||||
ED | 11.98 | 0.4 | 8.32 | 0.36 | 10.15 | 0.38 | ||||||||||||
DBA | 12.32 | 0.35 | 8.56 | 0.32 | 10.44 | 0.34 | ||||||||||||
SGD-DBA | 12.17 | 0.37 | 8.51 | 0.34 | 10.34 | 0.36 | ||||||||||||
Soft-DDBA | 11.10 | 0.54 | 7.90 | 0.49 | 9.50 | 0.52 | ||||||||||||
FC-DTA-Soft-DBA | 6.87 | 0.77 | 6.79 | 0.41 | 6.83 | 0.59 |
1 |
LÓPEZ J C, RIDER M J, WU Q W. Parsimonious short-term load forecasting for optimal operation planning of electrical distribution systems[J]. IEEE Transactions on Power Systems, 2019, 34 (2): 1427- 1437.
DOI |
2 | 张籍, 薛儒涛, 刘慧, 等. 基于深度信念网络的不同行业中长期负荷预测[J]. 电力系统及其自动化学报, 2019, 31 (9): 12- 19, 27. |
ZHANG Ji, XUE Rutao, LIU Hui, et al. Medium-and long-term load forecasting for different industries based on deep belief network[J]. Proceedings of the CSU-EPSA, 2019, 31 (9): 12- 19, 27. | |
3 |
LUSIS P, KHALILPOUR K R, ANDREW L, et al. Short-term residential load forecasting: impact of calendar effects and forecast granularity[J]. Applied Energy, 2017, 205, 654- 669.
DOI |
4 |
SINGH P, DWIVEDI P. A novel hybrid model based on neural network and multi-objective optimization for effective load forecast[J]. Energy, 2019, 182, 606- 622.
DOI |
5 | SADEGHI M S. A hybrid intelligent-based linear-nonlinear model for accurate daily peak load forecasting[J]. Journal of Intelligent & Fuzzy Systems, 2014, 26 (6): 3013- 3020. |
6 | 祝青, 孟祥娟, 陈晓峰, 等. 基于时间尺度组合优化的中长期负荷预测方法[J]. 大众用电, 2021, 36 (6): 20- 22. |
7 |
ZHU K D, LI Y P, MAO W B, et al. LSTM enhanced by dual-attention-based encoder-decoder for daily peak load forecasting[J]. Electric Power Systems Research, 2022, 208, 107860.
DOI |
8 |
ZHENG H T, YUAN J B, CHEN L. Short-term load forecasting using EMD-LSTM neural networks with a xgboost algorithm for feature importance evaluation[J]. Energies, 2017, 10 (8): 1168.
DOI |
9 | SUN T H, ZHANG T Y, TENG Y, et al. Monthly electricity consumption forecasting method based on X12 and STL decomposition model in an integrated energy system[J]. Mathematical Problems in Engineering, 2019, 2019, 9012543. |
10 |
TRULL O, GARCÍA-DÍAZ J C, PEIRÓ-SIGNES A. Multiple seasonal STL decomposition with discrete-interval moving seasonalities[J]. Applied Mathematics and Computation, 2022, 433, 127398.
DOI |
11 | 全一鸣, 喻敏, 王文波, 等. 基于分形优化的VMD和GA-BP的短期风速预测[J]. 太阳能学报, 2023, 44 (7): 436- 446. |
QUAN Yiming, YU Min, WANG Wenbo, et al. Short-term wind speed prediction based on fractal optimization of VMD-GA-BP[J]. Acta Energiae Solaris Sinica, 2023, 44 (7): 436- 446. | |
12 |
CHEN Y T, ZHANG D X. Theory-guided deep-learning for electrical load forecasting (TgDLF) via ensemble long short-term memory[J]. Advances in Applied Energy, 2021, 1, 100004.
DOI |
13 | 张颖超, 沈子豪, 马伟叁, 等. 相似样本优化选取的短期风电功率预测[J]. 重庆理工大学学报(自然科学), 2022, (1): 277- 284. |
ZHANG Yingchao, SHEN Zihao, MA Weisan, et al. Short-term wind power forecast based on DTW similar optimization sample selection[J]. Journal of Chongqing University of Technology (Natural Science), 2022, (1): 277- 284. | |
14 |
LIANG H S, MA J. Develop load shape dictionary through efficient clustering based on elastic dissimilarity measure[J]. IEEE Transactions on Smart Grid, 2021, 12 (1): 442- 452.
DOI |
15 | CUTURI M, BLONDEL M. Soft-DTW: a differentiable loss function for time-series[C]//Proceedings of the 34th International Conference on Machine Learning-Volume 70. Sydney, NSW, Australia. ACM, 2017: 894–903. |
16 |
PETITJEAN F, KETTERLIN A, GANÇARSKI P. A global averaging method for dynamic time warping, with applications to clustering[J]. Pattern Recognition, 2011, 44 (3): 678- 693.
DOI |
17 |
WANG B, TAI N L, ZHAI H Q, et al. A new ARMAX model based on evolutionary algorithm and particle swarm optimization for short-term load forecasting[J]. Electric Power Systems Research, 2008, 78 (10): 1679- 1685.
DOI |
18 |
丁义, 杨建. 欧式距离与标准化欧式距离在k近邻算法中的比较[J]. 软件, 2020, 41 (10): 135- 136, 140.
DOI |
DING Yi, YANG Jian. Comparison between euclidean distance and standardized euclidean distance in k-nearest neighbor algorithm[J]. Computer Engineering & Software, 2020, 41 (10): 135- 136, 140.
DOI |
|
19 | 苏振宇, 龙勇, 汪於. 基于季节调整和Holt-Winters的月度负荷预测方法[J]. 中国管理科学, 2019, 27 (3): 30- 40. |
SU Zhenyu, LONG Yong, WANG Yu. A hybrid monthly load forecasting method based on seasonal adjustment and holt-winters[J]. Chinese Journal of Management Science, 2019, 27 (3): 30- 40. | |
20 | 任峰, 李伟, 丁超. 基于灰色-周期外延组合模型的电力负荷预测[J]. 电网技术, 2007, 31 (24): 52- 54. |
REN Feng, LI Wei, DING Chao. Load forecasting based on gray-periodic extensional combinatorial model[J]. Power System Technology, 2007, 31 (24): 52- 54. | |
21 |
SCHULTZ D, JAIN B. Nonsmooth analysis and subgradient methods for averaging in dynamic time warping spaces[J]. Pattern Recognition, 2018, 74, 340- 358.
DOI |
22 |
ZHANG S Y, CHEN R H, CAO J C, et al. A CNN and LSTM-based multi-task learning architecture for short and medium-term electricity load forecasting[J]. Electric Power Systems Research, 2023, 222, 109507.
DOI |
23 |
RENTACHINTALA L R N P, MUTUKURU GANGIREDDY M R, MOHAPATRA P K. Trends of surface water quality of the Krishna River, India during the urbanization process[J]. Environmental Quality Management, 2023, 32 (3): 111- 121.
DOI |
24 | 张倩, 马愿, 李国丽, 等. 频域分解和深度学习算法在短期负荷及光伏功率预测中的应用[J]. 中国电机工程学报, 2019, 39 (8): 2221- 2230. |
ZHANG Qian, MA Yuan, LI Guoli, et al. Applications of frequency domain decomposition and deep learning algorithms in short-term load and photovoltaic power forecasting[J]. Proceedings of the CSEE, 2019, 39 (8): 2221- 2230. | |
25 | 韩芳, 王学春, 靳宗信. 基于ACF的基音检测改进算法[J]. 现代电子技术, 2017, 40 (19): 71- 74, 78. |
HAN Fang, WANG Xuechun, JIN Zongxin. Improved pitch detection algorithm based on ACF[J]. Modern Electronics Technique, 2017, 40 (19): 71- 74, 78. |
[1] | Qingchao SUN, Jialiang LI, Wanli JIANG, Ruoyu WANG, Zhipeng LI, Yarong HU, Jianbin ZHU. Mid-long Term Urban Power Load Forecasting Based on Data-Driven Spatio-temporal Networks [J]. Electric Power, 2025, 58(3): 168-174. |
[2] | Yufei WANG, Tong DU, Weiguo BIAN, Zhao ZHANG, Huiting LIU, Lijun YANG. Short-term Load Forecasting Based on DTW K-medoids and VMD Multi-branch Neural Network for Multiple Users [J]. Electric Power, 2024, 57(6): 121-130. |
[3] | Hang LIU, Hao SHEN, Yong YANG, Ling JI, Yang YU. Load Forecast of Electric Trucks Aggregation Based on Higher-order Markov Chains [J]. Electric Power, 2024, 57(5): 61-69. |
[4] | Ying ZHOU, Xuefeng BAI, Yang WANG, Min QIU, Chong SUN, Yajie WU, Bin LI. Analysis and Evolution Trend of Temperature-Sensitive Loads for Virtual Power Plant Operation [J]. Electric Power, 2024, 57(1): 9-17. |
[5] | TANG Xuchen, CHAO Zhu, DUAN Qinwei, SU Binghong, CHEN Huican. Probabilistic Load Forecasting Method of High Voltage Substation Based on Hierarchical Measurement Data [J]. Electric Power, 2023, 56(8): 143-150. |
[6] | JIA Wei, HUANG Yuchun. Method of Load Forecasting in Microgrid Based on Differential Expansion of Small Sample Data [J]. Electric Power, 2023, 56(8): 151-156,165. |
[7] | YANG Xihang, HUANG Chun, SHEN Yatao, HU Nianen, WAN Ziheng. Fault Location Method for Distribution Lines Based on Loss Power Matching [J]. Electric Power, 2022, 55(8): 113-120. |
[8] | LI Wenwu, SHI Qiang, LI Dan, HU Qunyong, TANG Yun, MEI Jinchao. Multi-stage Optimization Forecast of Short-term Power Load Based on VMD and PSO-SVR [J]. Electric Power, 2022, 55(8): 171-177. |
[9] | XU Yusong, ZOU Shanhua, LU Xianling. Short-Term Load Forecasting Based on Feature Selection and Combination Model [J]. Electric Power, 2022, 55(7): 121-127. |
[10] | LI Dan, ZHANG Yuanhang, LI Huangqiang, TONG Huamin, WANG Lingyun. Design of a Short-Term Load Intelligent Forecasting System for Regional Power Grid Based on Accurate Weather Data [J]. Electric Power, 2022, 55(7): 128-133. |
[11] | ZHENG Haofeng, YANG Guohua, KANG Wenjun, LIU Zhiyuan, LIU Shitao, WU Hong, ZHANG Honghao. Load Forecasting Based on Multiple Load Features and TCN-GRU Neural Network [J]. Electric Power, 2022, 55(11): 142-148. |
[12] | FAN Jiangchuan, YU Haozheng, LIU Huiting, YANG Lijun, AN Jiakun. Short-Term Load Forecasting Based on Multi-branch Residual Gated Convolution Neural Network [J]. Electric Power, 2022, 55(11): 155-162,174. |
[13] | YANG Huping, YU Yang, WANG Chao, LI Xiangjun, HU Yitao, RAO Chuchu. Short-Term Load Forecasting of Power System Based on VMD-CNN-BIGRU [J]. Electric Power, 2022, 55(10): 71-76. |
[14] | ZENG Youjun, XIAO Xianyong, XU Fangwei, ZHENG Lin. A Short-Term Load Forecasting Method Based on CNN-BiGRU-NN Model [J]. Electric Power, 2021, 54(9): 17-23. |
[15] | PANG Chuanjun, ZHANG Bo, YU Jianming, LIU Yan. Probabilistic Interval Forecasting of Power Load Based on Structured Load model [J]. Electric Power, 2021, 54(9): 89-95. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||