Electric Power ›› 2024, Vol. 57 ›› Issue (5): 61-69.DOI: 10.11930/j.issn.1004-9649.202306066
• Flexible Resource Operation and Key Technologies of New Power System Source Network Load Storage • Previous Articles Next Articles
Hang LIU1(), Hao SHEN1, Yong YANG1, Ling JI2, Yang YU3(
)
Received:
2023-06-19
Accepted:
2023-09-17
Online:
2024-05-23
Published:
2024-05-28
Supported by:
Hang LIU, Hao SHEN, Yong YANG, Ling JI, Yang YU. Load Forecast of Electric Trucks Aggregation Based on Higher-order Markov Chains[J]. Electric Power, 2024, 57(5): 61-69.
道路等级 | c1 | c2 | c3 | c4 | p1 | p2 | p3 | p4 | ||||||||
快速 | 0.9526 | 1 | 3 | 3 | 0.0405 | 500 | 3 | 3 | ||||||||
普通 | 0.9526 | 1 | 2 | 2 | 0.0405 | 500 | 2 | 2 |
Table 1 The adaptive coefficients involved in the road topology map
道路等级 | c1 | c2 | c3 | c4 | p1 | p2 | p3 | p4 | ||||||||
快速 | 0.9526 | 1 | 3 | 3 | 0.0405 | 500 | 3 | 3 | ||||||||
普通 | 0.9526 | 1 | 2 | 2 | 0.0405 | 500 | 2 | 2 |
参数名称 | 参数值 | |
ET电池容量/(kW·h) | 300 | |
计划充放电功率/kW | 200 | |
充放电效率/% | 94 |
Table 2 Parameter Setting
参数名称 | 参数值 | |
ET电池容量/(kW·h) | 300 | |
计划充放电功率/kW | 200 | |
充放电效率/% | 94 |
1 | 彭云, 李相达, 王文渊, 等. 绿色集装箱港口节能减排策略综述[J]. 交通运输工程学报, 2022, 22 (4): 28- 46. |
PENG Yun, LI Xiangda, WANG Wenyuan, et al. Review on energy saving and emission reduction strategies of green container ports[J]. Journal of Traffic and Transportation Engineering, 2022, 22 (4): 28- 46. | |
2 |
DUAN X Y, HU Z C, SONG Y H. Bidding strategies in energy and reserve markets for an aggregator of multiple EV fast charging stations with battery storage[J]. IEEE Transactions on Intelligent Transportation Systems, 2021, 22 (1): 471- 482.
DOI |
3 |
LOPEZ K L, GAGNE C, GARDNER M A. Demand-side management using deep learning for smart charging of electric vehicles[J]. IEEE Transactions on Smart Grid, 2019, 10 (3): 2683- 2691.
DOI |
4 | 文家燕, 闻海潮, 程洋, 等. 基于GWO-NSGA-Ⅱ混合算法的露天矿低碳运输调度[J]. 工矿自动化, 2023, 49 (2): 94- 101. |
WEN Jiayan, WEN Haichao, CHENG Yang, et al. Low-carbon transportation scheduling of open-pit mine based on GWO-NSGA-Ⅱ hybrid algorithm[J]. Journal of Mine Automation, 2023, 49 (2): 94- 101. | |
5 | 陈蓉珺, 何永秀, 陈奋开, 等. 基于系统动力学和蒙特卡洛模拟的电动汽车日负荷远期预测[J]. 中国电力, 2018, 51 (9): 126- 134. |
CHEN Rongjun, HE Yongxiu, CHEN Fenkai, et al. Long-term daily load forecast of electric vehicle based on system dynamics and Monte Carlo simulation[J]. Electric Power, 2018, 51 (9): 126- 134. | |
6 | 余军伟, 孙云莲, 张笑迪. 考虑发展不均衡的电动汽车充电负荷预测[J]. 电测与仪表, 2019, 56 (5): 43- 50. |
YU Junwei, SUN Yunlian, ZHANG Xiaodi. Charging load forecasting considering the unbalanced development of EV[J]. Electrical Measurement & Instrumentation, 2019, 56 (5): 43- 50. | |
7 | 赵书强, 周靖仁, 李志伟, 等. 基于出行链理论的电动汽车充电需求分析方法[J]. 电力自动化设备, 2017, 37 (8): 105- 112. |
ZHAO Shuqiang, ZHOU Jingren, LI Zhiwei, et al. EV charging demand analysis based on trip chain theory[J]. Electric Power Automation Equipment, 2017, 37 (8): 105- 112. | |
8 | 锁军, 李龙, 贺瀚青, 等. 考虑交通路况的电动汽车充电负荷预测[J]. 电网与清洁能源, 2022, 38 (10): 141- 147. |
SUO Jun, LI Long, HE Hanqing, et al. Load forecasting of electric vehicle charging considering traffic conditions[J]. Power System and Clean Energy, 2022, 38 (10): 141- 147. | |
9 | 蒋怡静, 于艾清, 黄敏丽. 考虑用户满意度的电动汽车时空双尺度有序充电引导策略[J]. 中国电力, 2020, 53 (4): 122- 130. |
JIANG Yijing, YU Aiqing, HUANG Minli. Coordinated charging guiding strategy for electric vehicles in temporalspatial dimension considering user satisfaction degree[J]. Electric Power, 2020, 53 (4): 122- 130. | |
10 | 刘志强, 张谦, 朱熠, 等. 计及车-路-站-网融合的电动汽车充电负荷时空分布预测[J]. 电力系统自动化, 2022, 46 (12): 36- 45. |
LIU Zhiqiang, ZHANG Qian, ZHU Yi, et al. Spatial-temporal distribution prediction of charging loads for electric vehicles considering vehicle-road-station-grid integration[J]. Automation of Electric Power Systems, 2022, 46 (12): 36- 45. | |
11 |
PERTL M, CARDUCCI F, TABONE M, et al. An equivalent time-variant storage model to harness EV flexibility: forecast and aggregation[J]. IEEE Transactions on Industrial Informatics, 2019, 15 (4): 1899- 1910.
DOI |
12 |
JIN Y W, YU B, SEO M, et al. Optimal aggregation design for massive V2G participation in energy market[J]. IEEE Access, 2020, 8, 211794- 211808.
DOI |
13 |
DABBAGHJAMANESH M, MOEINI A, KAVOUSI-FARD A. Reinforcement learning-based load forecasting of electric vehicle charging station using Q-learning technique[J]. IEEE Transactions on Industrial Informatics, 2021, 17 (6): 4229- 4237.
DOI |
14 |
ZHANG X, CHAN K W, LI H, et al. Deep-learning-based probabilistic forecasting of electric vehicle charging load with a novel queuing model[J]. IEEE Trans Cybern, 2021, 51 (6): 3157- 3170.
DOI |
15 | 郄朝辉, 李威, 崔晓丹, 等. 基于分层马尔可夫的可修复稳定控制系统可靠性分析[J]. 中国电力, 2020, 53 (3): 101- 109. |
QIE Zhaohui, LI Wei, CUI Xiaodan, et al. Reliability analysis of repairable stability control system based on hierarchical Markov[J]. Electric Power, 2020, 53 (3): 101- 109. | |
16 |
ZHANG Q, CHEN X, LIAO S Y. Energy management control strategy for hybrid energy storage systems in electric vehicles[J]. International Journal of Electrochemical Science, 2022, 17 (1): 220121.
DOI |
17 |
KIANI S, SHESHYEKANI K, DAGDOUGUI H. An extended state space model for aggregation of large-scale EVs considering fast charging[J]. IEEE Transactions on Transportation Electrification, 2023, 9 (1): 1238- 1251.
DOI |
18 |
LIN X Y, ZHANG G J, WEI S S. Velocity prediction using Markov Chain combined with driving pattern recognition and applied to Dual-Motor Electric Vehicle energy consumption evaluation[J]. Applied Soft Computing, 2021, 101, 106998.
DOI |
19 |
ALJOHANI TAWFIQ M, AHMED E, OSAMA M. Real-Time metadata-driven routing optimization for electric vehicle energy consumption minimization using deep reinforcement learning and Markov chain model[J]. Electric Power Systems Research, 2021, 192, 106962.
DOI |
20 |
SHEN H R, WANG Z J, ZHOU X Y, et al. Electric vehicle velocity and energy consumption predictions using transformer and markov-chain Monte Carlo[J]. IEEE Transactions on Transportation Electrification, 2022, 8 (3): 3836- 3847.
DOI |
21 |
DING T, ZENG Z Y, BAI J W, et al. Optimal electric vehicle charging strategy with Markov decision process and reinforcement learning technique[J]. IEEE Transactions on Industry Applications, 2020, 56 (5): 5811- 5823.
DOI |
22 | 董锴, 蔡新雷, 崔艳林, 等. 基于马尔科夫链的电动汽车聚合建模及多模式调频控制策略[J]. 电网技术, 2022, 46 (2): 622- 634. |
DONG Kai, CAI Xinlei, CUI Yanlin, et al. Aggregation modeling based on Markov chain and multi-mode control strategies of aggregated electric vehicles for frequency regulation[J]. Power System Technology, 2022, 46 (2): 622- 634. |
[1] | Qingchao SUN, Jialiang LI, Wanli JIANG, Ruoyu WANG, Zhipeng LI, Yarong HU, Jianbin ZHU. Mid-long Term Urban Power Load Forecasting Based on Data-Driven Spatio-temporal Networks [J]. Electric Power, 2025, 58(3): 168-174. |
[2] | Yufei WANG, Tong DU, Weiguo BIAN, Zhao ZHANG, Huiting LIU, Lijun YANG. Short-term Load Forecasting Based on DTW K-medoids and VMD Multi-branch Neural Network for Multiple Users [J]. Electric Power, 2024, 57(6): 121-130. |
[3] | Dan LI, Shuai HE, Wei YAN, Yue HU, Zeren FANG, Yunyan LIANG. Annual Daily Average Load Curve Prediction Considering Dynamic Time Anchors and Typical Feature Constraints [J]. Electric Power, 2024, 57(11): 36-47. |
[4] | Ying ZHOU, Xuefeng BAI, Yang WANG, Min QIU, Chong SUN, Yajie WU, Bin LI. Analysis and Evolution Trend of Temperature-Sensitive Loads for Virtual Power Plant Operation [J]. Electric Power, 2024, 57(1): 9-17. |
[5] | TANG Xuchen, CHAO Zhu, DUAN Qinwei, SU Binghong, CHEN Huican. Probabilistic Load Forecasting Method of High Voltage Substation Based on Hierarchical Measurement Data [J]. Electric Power, 2023, 56(8): 143-150. |
[6] | JIA Wei, HUANG Yuchun. Method of Load Forecasting in Microgrid Based on Differential Expansion of Small Sample Data [J]. Electric Power, 2023, 56(8): 151-156,165. |
[7] | YANG Xihang, HUANG Chun, SHEN Yatao, HU Nianen, WAN Ziheng. Fault Location Method for Distribution Lines Based on Loss Power Matching [J]. Electric Power, 2022, 55(8): 113-120. |
[8] | LI Wenwu, SHI Qiang, LI Dan, HU Qunyong, TANG Yun, MEI Jinchao. Multi-stage Optimization Forecast of Short-term Power Load Based on VMD and PSO-SVR [J]. Electric Power, 2022, 55(8): 171-177. |
[9] | XU Yusong, ZOU Shanhua, LU Xianling. Short-Term Load Forecasting Based on Feature Selection and Combination Model [J]. Electric Power, 2022, 55(7): 121-127. |
[10] | LI Dan, ZHANG Yuanhang, LI Huangqiang, TONG Huamin, WANG Lingyun. Design of a Short-Term Load Intelligent Forecasting System for Regional Power Grid Based on Accurate Weather Data [J]. Electric Power, 2022, 55(7): 128-133. |
[11] | ZHENG Haofeng, YANG Guohua, KANG Wenjun, LIU Zhiyuan, LIU Shitao, WU Hong, ZHANG Honghao. Load Forecasting Based on Multiple Load Features and TCN-GRU Neural Network [J]. Electric Power, 2022, 55(11): 142-148. |
[12] | FAN Jiangchuan, YU Haozheng, LIU Huiting, YANG Lijun, AN Jiakun. Short-Term Load Forecasting Based on Multi-branch Residual Gated Convolution Neural Network [J]. Electric Power, 2022, 55(11): 155-162,174. |
[13] | YANG Huping, YU Yang, WANG Chao, LI Xiangjun, HU Yitao, RAO Chuchu. Short-Term Load Forecasting of Power System Based on VMD-CNN-BIGRU [J]. Electric Power, 2022, 55(10): 71-76. |
[14] | ZENG Youjun, XIAO Xianyong, XU Fangwei, ZHENG Lin. A Short-Term Load Forecasting Method Based on CNN-BiGRU-NN Model [J]. Electric Power, 2021, 54(9): 17-23. |
[15] | PANG Chuanjun, ZHANG Bo, YU Jianming, LIU Yan. Probabilistic Interval Forecasting of Power Load Based on Structured Load model [J]. Electric Power, 2021, 54(9): 89-95. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||