Electric Power ›› 2025, Vol. 58 ›› Issue (6): 19-32.DOI: 10.11930/j.issn.1004-9649.202410086
• A Novel Low-Carbon and High-Performance Distribution System Powered by Artificial Intelligence • Previous Articles Next Articles
					
													YU Duo1(
), CAO Yi2(
), WANG Hairong1(
), ZHAO Aodong1, CAO Qian3
												  
						
						
						
					
				
Received:2024-10-28
															
							
															
							
															
							
																	Online:2025-06-30
															
							
							
																	Published:2025-06-28
															
							
						Supported by:YU Duo, CAO Yi, WANG Hairong, ZHAO Aodong, CAO Qian. Short-term Load Forecasting Based on a Combined ICEEMDAN-PE and IDBO-Informer Model[J]. Electric Power, 2025, 58(6): 19-32.
| 算法 | 参数设置 | |
| PSO | C1=C2=2,w1=0.8 | |
| SSA | D=0.3,T=0.1,R2=0.6 | |
| GWO | fi=2,A=0.1,w2=0.5 | |
| DBO | K1=0.1,S1=0.5 | |
| IDBO | K2=0.1,S2=0.5 | 
Table 1 Parameter setting for various optimization algorithms
| 算法 | 参数设置 | |
| PSO | C1=C2=2,w1=0.8 | |
| SSA | D=0.3,T=0.1,R2=0.6 | |
| GWO | fi=2,A=0.1,w2=0.5 | |
| DBO | K1=0.1,S1=0.5 | |
| IDBO | K2=0.1,S2=0.5 | 
| 测试 函数  | 算法 | BV | WV | MV | SD | 测试 函数  | 算法 | BV | WV | MV | SD | |||||||||||
| f1 | PSO | f4 | PSO | |||||||||||||||||||
| SSA | 0 | SSA | 0 | |||||||||||||||||||
| GWO | GWO | |||||||||||||||||||||
| DBO | DBO | |||||||||||||||||||||
| IDBO | 0 | 0 | 0 | 0 | IDBO | 0 | 0 | 0 | 0 | |||||||||||||
| 测试 函数  | 算法 | BV | WV | MV | SD | 测试 函数  | 算法 | BV | WV | MV | SD | |||||||||||
| f5 | PSO | f11 | PSO | 0 | ||||||||||||||||||
| SSA | SSA | |||||||||||||||||||||
| GWO | GWO | |||||||||||||||||||||
| DBO | DBO | |||||||||||||||||||||
| IDBO | 0 | 0 | 0 | 0 | IDBO | 0 | 0 | 0 | 0 | |||||||||||||
| 测试 函数  | 算法 | BV | WV | MV | SD | 测试 函数  | 算法 | BV | WV | MV | SD | |||||||||||
| f15 | PSO | 0 | 0 | 0 | 0 | f20 | PSO | |||||||||||||||
| SSA | 0 | 0 | 0 | 0 | SSA | 0 | ||||||||||||||||
| GWO | GWO | 0 | 0 | |||||||||||||||||||
| DBO | 0 | DBO | 0 | |||||||||||||||||||
| IDBO | 0 | IDBO | 0 | 0 | 0 | 0 | ||||||||||||||||
Table 2 Test results
| 测试 函数  | 算法 | BV | WV | MV | SD | 测试 函数  | 算法 | BV | WV | MV | SD | |||||||||||
| f1 | PSO | f4 | PSO | |||||||||||||||||||
| SSA | 0 | SSA | 0 | |||||||||||||||||||
| GWO | GWO | |||||||||||||||||||||
| DBO | DBO | |||||||||||||||||||||
| IDBO | 0 | 0 | 0 | 0 | IDBO | 0 | 0 | 0 | 0 | |||||||||||||
| 测试 函数  | 算法 | BV | WV | MV | SD | 测试 函数  | 算法 | BV | WV | MV | SD | |||||||||||
| f5 | PSO | f11 | PSO | 0 | ||||||||||||||||||
| SSA | SSA | |||||||||||||||||||||
| GWO | GWO | |||||||||||||||||||||
| DBO | DBO | |||||||||||||||||||||
| IDBO | 0 | 0 | 0 | 0 | IDBO | 0 | 0 | 0 | 0 | |||||||||||||
| 测试 函数  | 算法 | BV | WV | MV | SD | 测试 函数  | 算法 | BV | WV | MV | SD | |||||||||||
| f15 | PSO | 0 | 0 | 0 | 0 | f20 | PSO | |||||||||||||||
| SSA | 0 | 0 | 0 | 0 | SSA | 0 | ||||||||||||||||
| GWO | GWO | 0 | 0 | |||||||||||||||||||
| DBO | 0 | DBO | 0 | |||||||||||||||||||
| IDBO | 0 | IDBO | 0 | 0 | 0 | 0 | ||||||||||||||||
| 数据集 | 模型 | MAE/ MW  | RMSE/ MW  | R2 | ||||
| 一区 | ICEEMDAN-PE-IDBO-SVR | 265.7 | 296.8 | 0.947 | ||||
| ICEEMDAN-PE-IDBO-LSTM | 190.5 | 226.3 | 0.965 | |||||
| ICEEMDAN-PE-IDBO-GRU | 140.8 | 169.1 | 0.972 | |||||
| ICEEMDAN-PE-IDBO-Transformer | 90.8 | 121.4 | 0.980 | |||||
| ICEEMDAN-PE-IDBO-Informer | 81.3 | 109.2 | 0.991 | |||||
| 二区 | ICEEMDAN-PE-IDBO-SVR | 0.941 | ||||||
| ICEEMDAN-PE-IDBO-LSTM | 694.7 | 877.2 | 0.962 | |||||
| ICEEMDAN-PE-IDBO-GRU | 557.6 | 706.6 | 0.979 | |||||
| ICEEMDAN-PE-IDBO-Transformer | 493.3 | 585.8 | 0.985 | |||||
| ICEEMDAN-PE-IDBO-Informer | 331.8 | 384.1 | 0.995 | 
Table 3 Evaluation indicators for comparative experiments of different models
| 数据集 | 模型 | MAE/ MW  | RMSE/ MW  | R2 | ||||
| 一区 | ICEEMDAN-PE-IDBO-SVR | 265.7 | 296.8 | 0.947 | ||||
| ICEEMDAN-PE-IDBO-LSTM | 190.5 | 226.3 | 0.965 | |||||
| ICEEMDAN-PE-IDBO-GRU | 140.8 | 169.1 | 0.972 | |||||
| ICEEMDAN-PE-IDBO-Transformer | 90.8 | 121.4 | 0.980 | |||||
| ICEEMDAN-PE-IDBO-Informer | 81.3 | 109.2 | 0.991 | |||||
| 二区 | ICEEMDAN-PE-IDBO-SVR | 0.941 | ||||||
| ICEEMDAN-PE-IDBO-LSTM | 694.7 | 877.2 | 0.962 | |||||
| ICEEMDAN-PE-IDBO-GRU | 557.6 | 706.6 | 0.979 | |||||
| ICEEMDAN-PE-IDBO-Transformer | 493.3 | 585.8 | 0.985 | |||||
| ICEEMDAN-PE-IDBO-Informer | 331.8 | 384.1 | 0.995 | 
| 数据集 | 模型 | MAE/ MW  | RMSE/ MW  | R2 | ||||
| 一区 | ICEEMDAN-PE-PSO-Informer | 138.7 | 169.9 | 0.974 | ||||
| ICEEMDAN-PE-GSA-Informer | 136.1 | 167.8 | 0.975 | |||||
| ICEEMDAN-PE-GWO-Informer | 133.2 | 161.4 | 0.979 | |||||
| ICEEMDAN-PE-BOA-Informer | 89.2 | 119.8 | 0.983 | |||||
| ICEEMDAN-PE-DBO-Informer | 87.8 | 117.9 | 0.985 | |||||
| ICEEMDAN-PE-IDBO-Informer | 81.3 | 109.2 | 0.991 | |||||
| 二区 | ICEEMDAN-PE-PSO-Informer | 568.7 | 726.3 | 0.977 | ||||
| ICEEMDAN-PE-GSA-Informer | 511.2 | 603.4 | 0.981 | |||||
| ICEEMDAN-PE-GWO-Informer | 492.4 | 585.2 | 0.984 | |||||
| ICEEMDAN-PE-BOA-Informer | 391.2 | 563.5 | 0.989 | |||||
| ICEEMDAN-PE-DBO-Informer | 373.9 | 418.8 | 0.992 | |||||
| ICEEMDAN-PE-IDBO-Informer | 331.8 | 384.1 | 0.995 | 
Table 4 Evaluation indicators for different optimization algorithms
| 数据集 | 模型 | MAE/ MW  | RMSE/ MW  | R2 | ||||
| 一区 | ICEEMDAN-PE-PSO-Informer | 138.7 | 169.9 | 0.974 | ||||
| ICEEMDAN-PE-GSA-Informer | 136.1 | 167.8 | 0.975 | |||||
| ICEEMDAN-PE-GWO-Informer | 133.2 | 161.4 | 0.979 | |||||
| ICEEMDAN-PE-BOA-Informer | 89.2 | 119.8 | 0.983 | |||||
| ICEEMDAN-PE-DBO-Informer | 87.8 | 117.9 | 0.985 | |||||
| ICEEMDAN-PE-IDBO-Informer | 81.3 | 109.2 | 0.991 | |||||
| 二区 | ICEEMDAN-PE-PSO-Informer | 568.7 | 726.3 | 0.977 | ||||
| ICEEMDAN-PE-GSA-Informer | 511.2 | 603.4 | 0.981 | |||||
| ICEEMDAN-PE-GWO-Informer | 492.4 | 585.2 | 0.984 | |||||
| ICEEMDAN-PE-BOA-Informer | 391.2 | 563.5 | 0.989 | |||||
| ICEEMDAN-PE-DBO-Informer | 373.9 | 418.8 | 0.992 | |||||
| ICEEMDAN-PE-IDBO-Informer | 331.8 | 384.1 | 0.995 | 
| 数据集 | 模型 | MAE/ MW  | RMSE/ MW  | R2 | ||||
| 一区 | EMD-PE-IDBO-Informer | 272.6 | 310.7 | 0.934 | ||||
| EEMD-PE-IDBO-Informer | 236.3 | 279.2 | 0.956 | |||||
| CEEMD-PE-IDBO-Informer | 187.3 | 219.6 | 0.969 | |||||
| CEEMDAN-PE-IDBO-Informer | 146.5 | 186.8 | 0.971 | |||||
| ICEEMDAN-PE-IDBO-Informer | 81.3 | 109.2 | 0.991 | |||||
| 二区 | EMD-PE-IDBO-Informer | 0.933 | ||||||
| EEMD-PE-IDBO-Informer | 0.948 | |||||||
| CEEMD-PE-IDBO-Informer | 646.7 | 796.2 | 0.967 | |||||
| CEEMDAN-PE-IDBO-Informer | 541.2 | 715.4 | 0.978 | |||||
| ICEEMDAN-PE-IDBO-Informer | 331.8 | 384.1 | 0.995 | 
Table 5 Evaluation indicators for different modal decomposition methods
| 数据集 | 模型 | MAE/ MW  | RMSE/ MW  | R2 | ||||
| 一区 | EMD-PE-IDBO-Informer | 272.6 | 310.7 | 0.934 | ||||
| EEMD-PE-IDBO-Informer | 236.3 | 279.2 | 0.956 | |||||
| CEEMD-PE-IDBO-Informer | 187.3 | 219.6 | 0.969 | |||||
| CEEMDAN-PE-IDBO-Informer | 146.5 | 186.8 | 0.971 | |||||
| ICEEMDAN-PE-IDBO-Informer | 81.3 | 109.2 | 0.991 | |||||
| 二区 | EMD-PE-IDBO-Informer | 0.933 | ||||||
| EEMD-PE-IDBO-Informer | 0.948 | |||||||
| CEEMD-PE-IDBO-Informer | 646.7 | 796.2 | 0.967 | |||||
| CEEMDAN-PE-IDBO-Informer | 541.2 | 715.4 | 0.978 | |||||
| ICEEMDAN-PE-IDBO-Informer | 331.8 | 384.1 | 0.995 | 
| 数据集 | 模型 | MAE/MW | RMSE/MW | R2 | ||||
| 一区 | no-WSTD | 267.6 | 298.2 | 0.944 | ||||
| no-ICEEMDAN | 301.3 | 387.7 | 0.916 | |||||
| no-PE | 286.4 | 353.1 | 0.939 | |||||
| no-IDBO | 346.8 | 452.4 | 0.901 | |||||
| ICEEMDAN-PE-IDBO-Informer | 81.3 | 109.2 | 0.991 | |||||
| 二区 | no-WSTD | 0.946 | ||||||
| no-ICEEMDAN | 0.918 | |||||||
| no-PE | 0.937 | |||||||
| no-IDBO | 0.908 | |||||||
| ICEEMDAN-PE-IDBO-Informer | 331.8 | 384.1 | 0.995 | 
Table 6 Evaluation indicators for ablation experiments on two datasets
| 数据集 | 模型 | MAE/MW | RMSE/MW | R2 | ||||
| 一区 | no-WSTD | 267.6 | 298.2 | 0.944 | ||||
| no-ICEEMDAN | 301.3 | 387.7 | 0.916 | |||||
| no-PE | 286.4 | 353.1 | 0.939 | |||||
| no-IDBO | 346.8 | 452.4 | 0.901 | |||||
| ICEEMDAN-PE-IDBO-Informer | 81.3 | 109.2 | 0.991 | |||||
| 二区 | no-WSTD | 0.946 | ||||||
| no-ICEEMDAN | 0.918 | |||||||
| no-PE | 0.937 | |||||||
| no-IDBO | 0.908 | |||||||
| ICEEMDAN-PE-IDBO-Informer | 331.8 | 384.1 | 0.995 | 
| 1 | 杨海柱, 田馥铭, 张鹏, 等. 基于CEEMD-FE和AOA-LSSVM的短期电力负荷预测[J]. 电力系统保护与控制, 2022, 50 (13): 126- 133. | 
| YANG Haizhu, TIAN Fuming, ZHANG Peng, et al. Short-term load forecasting based on CEEMD-FE-AOA-LSSVM[J]. Power System Protection and Control, 2022, 50 (13): 126- 133. | |
| 2 | 戴浩男, 张辰灏, 甄钊, 等. 基于时空特征聚类和双层动态图卷积网络建模的短期净负荷预测[J]. 高电压技术, 2024, 50 (9): 3914- 3923. | 
| DAI Haonan, ZHANG Chenhao, ZHEN Zhao, et al. Short-term net load forecasting based on temporal-spatial feature clustering and two-layer dynamic graph convolutional network modeling[J]. High Voltage Engineering, 2024, 50 (9): 3914- 3923. | |
| 3 | 孟衡, 张涛, 王金, 等. 基于多尺度时空图卷积网络与Transformer融合的多节点短期电力负荷预测方法[J]. 电网技术, 2024, 48 (10): 4297- 4311. | 
| MENG Heng, ZHANG Tao, WANG Jin, et al. Multi-node short-term power load forecasting method based on multi-scale spatiotemporal graph convolution network and transformer[J]. Power System Technology, 2024, 48 (10): 4297- 4311. | |
| 4 | 范明康, 张怡, 康健, 等. 基于模糊聚类-马尔可夫链的换电站负荷预测模型[J]. 电力建设, 2023, 44 (10): 63- 71. | 
| FAN Mingkang, ZHANG Yi, KANG Jian, et al. Fuzzy clustering-markov chain based load forecasting modeling for battery-swap stations[J]. Electric Power Construction, 2023, 44 (10): 63- 71. | |
| 5 | YAMASAKI M, FREIRE R Z, SEMAN L O, et al. Optimized hybrid ensemble learning approaches applied to very short-term load forecasting[J]. International Journal of Electrical Power & Energy Systems, 2024, 155, 109579. | 
| 6 |  
											WEI N, YIN C, YIN L H, et al. Short-term load forecasting based on WM algorithm and transfer learning model[J]. Applied Energy, 2024, 353, 122087. 
																							 DOI  | 
										
| 7 | 王晨, 李又轩, 吴其琦, 等. 基于SVM-STL-LSTM的区域短期电力负荷预测研究[J]. 水电能源科学, 2024, 42 (4): 215- 218. | 
| WANG Chen, LI Youxuan, WU Qiqi, et al. Research on regional short-term load forecasting based on SVM-STL-LSTM[J]. Water Resources and Power, 2024, 42 (4): 215- 218. | |
| 8 | 王永利, 刘泽强, 董焕然, 等. 基于VMD-CSO-RF的综合能源系统短期负荷预测[J/OL]. 华北电力大学学报(自然科学版), 2024: 1–10. [2024-10-04]. http://kns.cnki.net/kcms/detail/13.1212.TM.20240314.1850.002.html. | 
| WANG Yongli, LIU Zeqiang, DONG Huanran, et al. Short-term load forecasting of integrated energy systems based on VMD-CSO-RF [J/OL]. Journal of North China Electric Power University(Natural science edition), 1–10[2024-10-04]. http://kns.cnki.net/kcms/detail/13.1212.TM.20240314.1850.002.html. | |
| 9 |  
											ZHANG T R, HUANG Y P, LIAO H, et al. A hybrid electric vehicle load classification and forecasting approach based on GBDT algorithm and temporal convolutional network[J]. Applied Energy, 2023, 351, 121768. 
																							 DOI  | 
										
| 10 | 李甲祎, 赵兵, 刘宣, 等. 基于DWT-Informer的台区短期负荷预测[J]. 电测与仪表, 2024, 61 (3): 160- 166, 191. | 
| LI Jiayi, ZHAO Bing, LIU Xuan, et al. Short-term substation load forecasting based on DWT-Informer model[J]. Electrical Measurement & Instrumentation, 2024, 61 (3): 160- 166, 191. | |
| 11 |  
											ABUMOHSEN M, OWDA A Y, OWDA M. Electrical load forecasting using LSTM, GRU, and RNN algorithms[J]. Energies, 2023, 16 (5): 2283. 
																							 DOI  | 
										
| 12 | 茹瑶, 赵永宁, 叶林, 等. 超短期LSTM风电功率预测模型的混合专家模块化代理解释方法[J]. 电力建设, 2024, 45 (11): 114- 124. | 
| RU Yao, ZHAO Yongning, YE Lin, et al. Modular surrogate interpretation method based on decision tree mixture of experts for ultra-short-term LSTM wind power forecasting model[J]. Electric Power Construction, 2024, 45 (11): 114- 124. | |
| 13 | 侯健敏, 孟莹, 李志, 等. 基于综合相关性指标与SA-BiGRU的综合能源系统多元负荷预测[J]. 电力建设, 2024, 45 (5): 118- 130. | 
| HOU Jianmin, MENG Ying, LI Zhi, et al. Multi-energy load forecasting in integrated energy systems based on comprehensive correlation index and SA-BiGRU network[J]. Electric Power Construction, 2024, 45 (5): 118- 130. | |
| 14 | 吴军英, 路欣, 刘宏, 等. 基于Spearman-GCN-GRU模型的超短期多区域电力负荷预测[J]. 中国电力, 2024, 57 (6): 131- 140. | 
| WU Junying, LU Xin, LIU Hong, et al. Ultra-short-term multi-region power load forecasting based on spearman-GCN-GRU model[J]. Electric Power, 2024, 57 (6): 131- 140. | |
| 15 |  
											JALALIFAR R, DELAVARM R, GHADERI S F. SAC-ConvLSTM: a novel spatio-temporal deep learning-based approach for a short term power load forecasting[J]. Expert Systems with Applications, 2024, 237, 121487. 
																							 DOI  | 
										
| 16 |  
											MOUNIR N, OUADI H, JRHILIFA I. Short-term electric load forecasting using an EMD-BI-LSTM approach for smart grid energy management system[J]. Energy and Buildings, 2023, 288, 113022. 
																							 DOI  | 
										
| 17 | WIDIANTO A J, ADYTIA D, ADITYA I A. Feature modelling for electricity load forecasting using hybrid EEMD-BiLSTM with spatially correlated weather data[J]. International Journal of Intelligent Engineering & Systems, 2024, 17 (6): 1193. | 
| 18 | ZHENG G Q, KONG L R, SU Z E, et al. Approach for short-term power load prediction utilizing the ICEEMDAN–LSTM–TCN–bagging model[J]. Journal of Electrical Engineering & Technology, 2025, 20 (1): 231- 243. | 
| 19 | 杨国华, 祁鑫, 贾睿, 等. 基于CEEMD-SE的CNN&LSTM-GRU短期风电功率预测[J]. 中国电力, 2024, 57 (2): 55- 61. | 
| YANG Guohua, QI Xin, JIA Rui, et al. Short-term wind power forecast based on CNN&LSTM-GRU model integrated with CEEMD-SE algorithm[J]. Electric Power, 2024, 57 (2): 55- 61. | |
| 20 |  
											SHI Y F, WANG B, YU Y W, et al. Robust anomaly detection for multivariate time series through temporal GCNs and attention-based VAE[J]. Knowledge-Based Systems, 2023, 275, 110725. 
																							 DOI  | 
										
| 21 |  
											JIAO D X, HE R T, WANG L Y, et al. Research on a short-term forecast of industry load based on PSO-LSTM[J]. Journal of Physics: Conference Series, 2024, 2814 (1): 012040. 
																							 DOI  | 
										
| 22 |  
											FAN C C, ZHENG Y X, WANG S Q, et al. Prediction of bond strength of reinforced concrete structures based on feature selection and GWO-SVR model[J]. Construction and Building Materials, 2023, 400, 132602. 
																							 DOI  | 
										
| 23 |  
											AHMED U, KHAN A R, MAHMOOD A, et al. Short-term global horizontal irradiance forecasting using weather classified categorical boosting[J]. Applied Soft Computing, 2024, 155, 111441. 
																							 DOI  | 
										
| 24 | 刘洋, 伍双喜, 朱誉, 等. 基于CEEMDAN和DBO-GRNN的风电功率超短期预测[J]. 电力建设, 2024, 45 (8): 97- 105. | 
| LIU Yang, WU Shuangxi, ZHU Yu, et al. Ultra-short-term prediction of wind power based on CEEMDAN and DBO-GRNN[J]. Electric Power Construction, 2024, 45 (8): 97- 105. | |
| 25 | 刘杰, 从兰美, 夏远洋, 等. 基于DBO-VMD和IWOA-BILSTM神经网络组合模型的短期电力负荷预测[J]. 电力系统保护与控制, 2024, 52 (8): 123- 133. | 
| LIU Jie, CONG Lanmei, XIA Yuanyang, et al. Short-term power load prediction based on DBO-VMD and an IWOA-BILSTM neural network combination model[J]. Power System Protection and Control, 2024, 52 (8): 123- 133. | |
| 26 | 丁立, 吴东晖, 隋佳音, 等. 基于MIV-DBO-DeepAR模型的净负荷预测研究[J/OL]. 华北电力大学学报(自然科学版), 1–14[2025-01-27]. http://kns.cnki.net/kcms/detail/13.1212.TM.20240311.1446.002.html. | 
| DING Li, WU Donghui, SUI Jiayin, et al. Research on net load prediction based on MIV-DBO-DeepAR model [J/OL]. Journal of North China Electric Power University (Natural Science Edition) , 1–14[2025-01-27]. http://kns.cnki.net/kcms/detail/13.1212.TM.20240311.1446.002.html. | 
| [1] | LUO Chao, NI Tian, CHEN Lingyun, KANG Yi, HOU Hui, WU Xixiu. Panoramic Optimal Prediction of Load 8760 Curve Guided by Gaussian Distribution [J]. Electric Power, 2025, 58(8): 31-40. | 
| [2] | LI Ke, PAN Tinglong, XU Dezhi. Short-Term Power Load Forecasting Based on MSCNN-BiGRU-Attention [J]. Electric Power, 2025, 58(6): 10-18. | 
| [3] | Qingchao SUN, Jialiang LI, Wanli JIANG, Ruoyu WANG, Zhipeng LI, Yarong HU, Jianbin ZHU. Mid-long Term Urban Power Load Forecasting Based on Data-Driven Spatio-temporal Networks [J]. Electric Power, 2025, 58(3): 168-174. | 
| [4] | YU Sheng, SUN Ke, CAI Hua, LIU Jian, GU Yilei, JIANG Yunpeng. A Short-term Power Load Forecasting Method Combining Extreme Gradient Boosting Decision Tree with an Improved Informer [J]. Electric Power, 2025, 58(10): 195-205. | 
| [5] | Yufei WANG, Tong DU, Weiguo BIAN, Zhao ZHANG, Huiting LIU, Lijun YANG. Short-term Load Forecasting Based on DTW K-medoids and VMD Multi-branch Neural Network for Multiple Users [J]. Electric Power, 2024, 57(6): 121-130. | 
| [6] | Hang LIU, Hao SHEN, Yong YANG, Ling JI, Yang YU. Load Forecast of Electric Trucks Aggregation Based on Higher-order Markov Chains [J]. Electric Power, 2024, 57(5): 61-69. | 
| [7] | Dan LI, Shuai HE, Wei YAN, Yue HU, Zeren FANG, Yunyan LIANG. Annual Daily Average Load Curve Prediction Considering Dynamic Time Anchors and Typical Feature Constraints [J]. Electric Power, 2024, 57(11): 36-47. | 
| [8] | Ying ZHOU, Xuefeng BAI, Yang WANG, Min QIU, Chong SUN, Yajie WU, Bin LI. Analysis and Evolution Trend of Temperature-Sensitive Loads for Virtual Power Plant Operation [J]. Electric Power, 2024, 57(1): 9-17. | 
| [9] | TANG Xuchen, CHAO Zhu, DUAN Qinwei, SU Binghong, CHEN Huican. Probabilistic Load Forecasting Method of High Voltage Substation Based on Hierarchical Measurement Data [J]. Electric Power, 2023, 56(8): 143-150. | 
| [10] | JIA Wei, HUANG Yuchun. Method of Load Forecasting in Microgrid Based on Differential Expansion of Small Sample Data [J]. Electric Power, 2023, 56(8): 151-156,165. | 
| [11] | YANG Xihang, HUANG Chun, SHEN Yatao, HU Nianen, WAN Ziheng. Fault Location Method for Distribution Lines Based on Loss Power Matching [J]. Electric Power, 2022, 55(8): 113-120. | 
| [12] | LI Wenwu, SHI Qiang, LI Dan, HU Qunyong, TANG Yun, MEI Jinchao. Multi-stage Optimization Forecast of Short-term Power Load Based on VMD and PSO-SVR [J]. Electric Power, 2022, 55(8): 171-177. | 
| [13] | XU Yusong, ZOU Shanhua, LU Xianling. Short-Term Load Forecasting Based on Feature Selection and Combination Model [J]. Electric Power, 2022, 55(7): 121-127. | 
| [14] | LI Dan, ZHANG Yuanhang, LI Huangqiang, TONG Huamin, WANG Lingyun. Design of a Short-Term Load Intelligent Forecasting System for Regional Power Grid Based on Accurate Weather Data [J]. Electric Power, 2022, 55(7): 128-133. | 
| [15] | ZHENG Haofeng, YANG Guohua, KANG Wenjun, LIU Zhiyuan, LIU Shitao, WU Hong, ZHANG Honghao. Load Forecasting Based on Multiple Load Features and TCN-GRU Neural Network [J]. Electric Power, 2022, 55(11): 142-148. | 
| Viewed | ||||||
| 
										Full text | 
									
										 | 
								|||||
| 
										Abstract | 
									
										 | 
								|||||
