Electric Power ›› 2024, Vol. 57 ›› Issue (1): 2-8.DOI: 10.11930/j.issn.1004-9649.202306121
• Construction and Operation of Virtual Power Plants • Previous Articles Next Articles
Tianqi SONG(), Zhipeng LV(
), Zhenhao SONG, Yunting MA, Zhihui ZHANG, Shan ZHOU, Hao LI
Received:
2023-06-30
Accepted:
2023-09-28
Online:
2024-01-23
Published:
2024-01-28
Supported by:
Tianqi SONG, Zhipeng LV, Zhenhao SONG, Yunting MA, Zhihui ZHANG, Shan ZHOU, Hao LI. Research and Thinking on the Aggregation and Dispatching Control Framework of Virtual Power Plant's Large Scale Flexible Resources[J]. Electric Power, 2024, 57(1): 2-8.
资源类别 | 电压等级 | 资源可控性 | ||
分布式电源 (专变/专线) | 10~35 kV | 电网调度机构直控[ | ||
分布式电源 | 220~380 V | 具备配自系统Ⅳ区直控条件的资源(有些可功率调节,有些只控并离网):1)始终授权直控,充当配网自动化调控资源(Ⅰ类);2)默认电网保消纳,仅在授权直控时,充当配网自动化调控资源(Ⅱ类);3)默认电网保消纳,从不授权直控,仅在应急条件下被并/离网(Ⅲ类) | ||
分布式电源 (聚合商) | 220~380 V | 1)聚合商达到直控标准的由调度机构直控调度[ 2)聚合商可签订协议以聚合的资源包含3种:①不具备配自系统Ⅳ区直控条件的资源,电网保消纳,响应聚合商调控;②具备配自系统Ⅳ区直控条件的Ⅱ类资源,在未授权充当配网自动化调控资源时,响应聚合商调控;③具备直控条件的Ⅲ类资源,在非应急条件下被并离网,响应聚合商调控 |
Table 1 Controllability of 35 kV and below distributed power resources of VPP
资源类别 | 电压等级 | 资源可控性 | ||
分布式电源 (专变/专线) | 10~35 kV | 电网调度机构直控[ | ||
分布式电源 | 220~380 V | 具备配自系统Ⅳ区直控条件的资源(有些可功率调节,有些只控并离网):1)始终授权直控,充当配网自动化调控资源(Ⅰ类);2)默认电网保消纳,仅在授权直控时,充当配网自动化调控资源(Ⅱ类);3)默认电网保消纳,从不授权直控,仅在应急条件下被并/离网(Ⅲ类) | ||
分布式电源 (聚合商) | 220~380 V | 1)聚合商达到直控标准的由调度机构直控调度[ 2)聚合商可签订协议以聚合的资源包含3种:①不具备配自系统Ⅳ区直控条件的资源,电网保消纳,响应聚合商调控;②具备配自系统Ⅳ区直控条件的Ⅱ类资源,在未授权充当配网自动化调控资源时,响应聚合商调控;③具备直控条件的Ⅲ类资源,在非应急条件下被并离网,响应聚合商调控 |
资源类型 | 电压等级 | 资源可控性 | ||
可调负荷 (专变/专线) | 220 V~35 kV | 1)符合调度机构直控标准的资源,可由调度机构直控[ | ||
可调负荷 (聚合商) | 220 V~35 kV | 1)聚合商符合调度机构直控标准的可由调度机构直控调度[11],否则由虚拟电厂平台调控; 2)聚合商可签订协议聚合的资源包含3种(有些可功率调节,有些只控并离网):①不具备配自系统Ⅳ区直控条件的资源,电网保供电,响应聚合商调控;②具备配自系统Ⅳ区直控条件的Ⅱ类资源,在未授权充当配网自动化调控资源时,响应聚合商调控;③具备直控条件的Ⅲ类资源,在非应急条件下,响应聚合商调控 |
Table 2 Controllability of 35 kV and below adjustable load resources of VPP
资源类型 | 电压等级 | 资源可控性 | ||
可调负荷 (专变/专线) | 220 V~35 kV | 1)符合调度机构直控标准的资源,可由调度机构直控[ | ||
可调负荷 (聚合商) | 220 V~35 kV | 1)聚合商符合调度机构直控标准的可由调度机构直控调度[11],否则由虚拟电厂平台调控; 2)聚合商可签订协议聚合的资源包含3种(有些可功率调节,有些只控并离网):①不具备配自系统Ⅳ区直控条件的资源,电网保供电,响应聚合商调控;②具备配自系统Ⅳ区直控条件的Ⅱ类资源,在未授权充当配网自动化调控资源时,响应聚合商调控;③具备直控条件的Ⅲ类资源,在非应急条件下,响应聚合商调控 |
资源类别 | 电压 等级 | 资源可控性 | ||
混合型 (储能) | 10~ 35 kV | 1)接受调度机构调度的资源,由调度机构直控[ | ||
混合型 (储能) | 220~ 380 V | 具备配自系统Ⅳ区直控条件的资源(有些可功率调节,有些只控并离网):1)始终授权直控,充当配网自动化调控资源(Ⅰ类);2)默认自由运行、只监不控,仅在授权直控时,充当配网自动化调控资源(Ⅱ类);3)默认自由运行、只监不控,从不授权直控,仅在应急条件下被并/离网(Ⅲ类) | ||
混合型 (储能聚合商) | 220 V-35 kV | 1)聚合商达直控标准的可由调度机构直控调度[ | ||
混合型 (微网) | 10~ 35 kV | 具备调度机构直控能力(可功率调节)[ | ||
混合型 (微网) | 220~ 380 V | 具备监测和记录运行状况的功能[ 具备配自系统Ⅳ区直控条件的资源(可功率调节):1)仅在授权直控时,充当配网自动化调控资源;2)从不授权直控的,在并网点电能质量不满足电网要求时,自动离网独立运行 | ||
混合型 (微网聚合商) | 220~ 380 V | 1)聚合商达直控标准的可由调度机构直控调度[ |
Table 3 Controllability of 35 kV and below mixed type resources of VPP
资源类别 | 电压 等级 | 资源可控性 | ||
混合型 (储能) | 10~ 35 kV | 1)接受调度机构调度的资源,由调度机构直控[ | ||
混合型 (储能) | 220~ 380 V | 具备配自系统Ⅳ区直控条件的资源(有些可功率调节,有些只控并离网):1)始终授权直控,充当配网自动化调控资源(Ⅰ类);2)默认自由运行、只监不控,仅在授权直控时,充当配网自动化调控资源(Ⅱ类);3)默认自由运行、只监不控,从不授权直控,仅在应急条件下被并/离网(Ⅲ类) | ||
混合型 (储能聚合商) | 220 V-35 kV | 1)聚合商达直控标准的可由调度机构直控调度[ | ||
混合型 (微网) | 10~ 35 kV | 具备调度机构直控能力(可功率调节)[ | ||
混合型 (微网) | 220~ 380 V | 具备监测和记录运行状况的功能[ 具备配自系统Ⅳ区直控条件的资源(可功率调节):1)仅在授权直控时,充当配网自动化调控资源;2)从不授权直控的,在并网点电能质量不满足电网要求时,自动离网独立运行 | ||
混合型 (微网聚合商) | 220~ 380 V | 1)聚合商达直控标准的可由调度机构直控调度[ |
1 | 张智刚, 康重庆. 碳中和目标下构建新型电力系统的挑战与展望[J]. 中国电机工程学报, 2022, 42 (8): 2806- 2819. |
ZHANG Zhigang, KANG Chongqing. Challenges and prospects for constructing the new-type power system towards a carbon neutrality future[J]. Proceedings of the CSEE, 2022, 42 (8): 2806- 2819. | |
2 | YAVUZ L, ÖNEN A, MUYEEN S M, et al. Transformation of micro grid to virtual power plant: a comprehensive review[J]. IET Generation, Transmission & Distribution, 2019, 13 (11): 1994- 2005. |
3 | ZHANG G, JIANG C W, WANG X. Comprehensive review on structure and operation of virtual power plant in electrical system[J]. IET Generation, Transmission & Distribution, 2019, 13 (2): 145- 156. |
4 | 卫璇, 潘昭光, 王彬, 等. 云管边端架构下虚拟电厂资源集群与协同调控研究综述及展望[J]. 全球能源互联网, 2020, 3 (6): 539- 551. |
WEI Xuan, PAN Zhaoguang, WANG Bin, et al. Review on virtual power plant resource aggregation and collaborative regulation using cloud-tube-edge-end architecture[J]. Journal of Global Energy Interconnection, 2020, 3 (6): 539- 551. | |
5 | 赵建立, 向佳霓, 汤卓凡, 等. 虚拟电厂在上海的实践探索与前景分析[J]. 中国电力, 2023, 56 (2): 1- 13. |
ZHAO Jianli, XIANG Jiani, TANG Zhuofan, et al. Practice exploration and prospect analysis of virtual power plant in Shanghai[J]. Electric Power, 2023, 56 (2): 1- 13. | |
6 | 袁金斗, 陈宋宋. 楼宇可调节负荷研究与应用[J]. 电力需求侧管理, 2023, 25 (1): 52- 58. |
YUAN Jindou, CHEN Songsong. Research and Application of adjustable load of buildings[J]. Power Demand Side Management, 2023, 25 (1): 52- 58. | |
7 |
马麟, 梁安琪, 王立永, 等. 公共楼宇可调负荷资源调控技术研究综述[J]. 电测与仪表, 2023, 60 (5): 1- 10, 22.
DOI |
MA Lin, LIANG Anqi, WANG Liyong, et al. Review of research on regulation technology of adjustable load resources in public buildings[J]. Electrical Measurement & Instrumentation, 2023, 60 (5): 1- 10, 22.
DOI |
|
8 |
杜宏宇, 张宏宇, 陈波, 等. 计及多种需求响应资源的虚拟电厂运行机制及控制策略优化[J]. 电工电能新技术, 2023, 42 (7): 77- 86.
DOI |
DU Hongyu, ZHANG Hongyu, CHEN Bo, et al. Operation mechanism and control strategy optimization of virtual power plant considering multiple DR resources[J]. Advanced Technology of Electrical Engineering and Energy, 2023, 42 (7): 77- 86.
DOI |
|
9 |
翟晓鹤, 余顺坤, 丁贺. 基于资源特性的虚拟电厂“双层-三阶段”运行策略设计[J]. 智慧电力, 2023, 51 (4): 92- 98.
DOI |
ZHAI Xiaohe, YU Shunkun, DING He. Two-layer-three-stage operation strategy of virtual power plant considering resource characteristics[J]. Smart Power, 2023, 51 (4): 92- 98.
DOI |
|
10 | 康重庆, 陈启鑫, 苏剑, 等. 新型电力系统规模化灵活资源虚拟电厂科学问题与研究框架[J]. 电力系统自动化, 2022, 46 (18): 3- 14. |
KANG Chongqing, CHEN Qixin, SU Jian, et al. Scientific problems and research framework of virtual power plant with enormous flexible distributed energy resources in new power system[J]. Automation of Electric Power Systems, 2022, 46 (18): 3- 14. | |
11 | 国家能源局南方监管局. 关于印发《南方区域电力并网运行管理实施细则》《南方区域电力辅助服务管理实施细则》的通知(南方监能市场〔2022〕91 号)[EB/OL].(2022-06-13)[2023-05-15].https://nfj.nea.gov.cn/adminContent/initViewContent.do?pk=4028811c80b7744a01815cbdb9a4006e. |
12 | 汪莞乔, 苏剑, 潘娟, 等. 虚拟电厂通信网络架构及关键技术研究展望[J]. 电力系统自动化, 2022, 46 (18): 15- 25. |
WANG Wanqiao, SU Jian, PAN Juan, et al. Prospect of research on communication network architecture and key technologies for virtual power plant[J]. Automation of Electric Power Systems, 2022, 46 (18): 15- 25. | |
13 | 周杰娜. 现代电力系统调度自动化[M]. 重庆: 重庆大学出版社, 2002. |
14 | 国家质量监督检验检疫总局, 中国国家标准化管理委员会. 分布式电源并网技术要求: GB/T 33593—2017[S |
15 | 国家质量监督检验检疫总局, 中国国家标准化管理委员会. 光伏发电站接入电力系统技术规定: GB/T 19964—2012[S]. 北京: 中国标准出版社, 2013. |
16 | 国家市场监督管理总局, 国家标准化管理委员会. 电化学储能系统接入电网技术规定: GB/T 36547—2018[S]. 北京: 中国标准出版社, 2018. |
17 | 国家质量监督检验检疫总局, 中国国家标准化管理委员会. 微电网接入电力系统技术规定: GB/T 33589—2017[S |
18 | 国家电力监管委员会, 国家能源局. 《电力二次系统安全防护规定》(2004年12月20日令第5号)[Z |
19 | 南瑞集团有限公司;国电南瑞科技股份有限公司. 一种台区能源控制系统: 114285159[P]. 2022-04-05. |
20 | 李彬, 白雪峰, 王京菊, 等. 新型电力负荷管理系统发展的关键支撑技术研究[J]. 内蒙古电力技术, 2023, 41 (2): 1- 6. |
LI Bin, BAI Xuefeng, WANG Jingju, et al. Research on key supporting technology for development of new power load management system[J]. Inner Mongolia Electric Power, 2023, 41 (2): 1- 6. | |
21 | 陈启鑫, 高洪超, 冯成, 等. 虚拟电厂动态构建与可信量化: 理论分析与关键技术[J]. 电力系统自动化, 2022, 46 (18): 26- 36. |
CHEN Qixin, GAO Hongchao, FENG Cheng, et al. Dynamic construction and trustworthy quantification of virtual power plant: theoretical analysis and key technologies[J]. Automation of Electric Power Systems, 2022, 46 (18): 26- 36. | |
22 | 许泽凯, 和敬涵, 刘曌, 等. 基于耦合约束解耦的虚拟电厂动态可行域求解方法[J/OL]. 中国电机工程学报: 1–13[2023-10-07]. http://kns.cnki.net/kcms/detail/11.2107.TM.20230608.1559.014.html. |
XU Zekai, HE Jinghan, LIU Zhao, et al. Solution method of virtual power plant dynamic feasible region based on decoupling of coupling constraints[J/OL]. Proceedings of the CSEE: 1–13[2023-10-07]. http://kns.cnki.net/kcms/detail/11.2107.TM.20230608.1559.014.html. |
[1] | WANG Jinfeng, LI Jinpeng, XU Yinliang, LIU Haitao, HE Jinxiong, XU Jianyuan. Distributed Optimization for VPP and Distribution Network Operation Considering Uncertainty and Green Certificate Market [J]. Electric Power, 2025, 58(4): 21-30, 192. |
[2] | Mingbing LI, Qiang LI, Xiyang GUAN, Haoyang ZHOU, Rui LU, Yankun FENG. Market Oriented Low-Carbon Optimal Scheduling of Virtual Power Plants Considering Multiple User-Side Resources Coordination [J]. Electric Power, 2025, 58(2): 66-76. |
[3] | Ke YANG, Dong WANG, Da LI, Wangjun ZHANG, Ga XIANG, Jun LI. Network Security Risk Assessment Index System and Calculation for Virtual Power Plant [J]. Electric Power, 2024, 57(8): 130-137. |
[4] | Zhongkai YI, Langbo HOU, Ying XU, Yongfeng WU, Zhimin LI, Junfei WU, Teng FENG, Liu HAN. Aggregation and Operation Key Technology of Virtual Power Plant with Flexible Resources in Electricity Market Environment: Review [J]. Electric Power, 2024, 57(12): 82-96. |
[5] | Ying ZHOU, Xuefeng BAI, Yang WANG, Min QIU, Chong SUN, Yajie WU, Bin LI. Analysis and Evolution Trend of Temperature-Sensitive Loads for Virtual Power Plant Operation [J]. Electric Power, 2024, 57(1): 9-17. |
[6] | Rui ZHU, Yiding OU, Xiaotian LI, Xingyu LEI, Yuqing ZHOU, Poyang ZHANG, Rui OU. Evaluation of Virtual Power Plant Flexibility Resources Based on External Characteristic Equivalence [J]. Electric Power, 2024, 57(1): 30-39. |
[7] | Mengfei XIE, Gaoquan MA, Bin LIU, Zhenning PAN, Yunfeng SHANG. Virtual Power Plant Quotation Strategy Based on Information Gap Decision Theory [J]. Electric Power, 2024, 57(1): 40-50. |
[8] | Yunchen FENG, Heping JIA, Min YAN, Genzhu LI, Le LIU, Dunnan LIU. Operation Optimization Method for Virtual Power Plant Participating in Clean Heating Based on Time-of-Use Tariff of Wind Power [J]. Electric Power, 2024, 57(1): 51-60. |
[9] | Ting ZHOU, Yudong TAN, Jin SUN, Ming WEN, Jing LIAO, Yang LI, Gong LIU, Dunnan LIU. Collaborative Optimization Strategy for Virtual Power Plant Participating in Energy and Ancillary Service Market [J]. Electric Power, 2024, 57(1): 61-70. |
[10] | Shuhan ZHANG, Qian AI, Xiaolu LI, Di WANG. Improved PBFT Consensus Mechanism for Multi-virtual Power Plant Transactions [J]. Electric Power, 2024, 57(1): 71-81, 157. |
[11] | Ying ZHANG, Yan WEN, Yu JI, Juan ZUO, Wenbo WANG. Calculation of Day-Ahead Frequency Regulation Capacity for Virtual Power Plants Based on Analytical Target Cascading Method [J]. Electric Power, 2024, 57(1): 82-90. |
[12] | Chao ZHANG, Dongmei ZHAO, Yu JI, Ying ZHANG. Real Time Optimal Dispatch of Virtual Power Plant Based on Improved Deep Q Network [J]. Electric Power, 2024, 57(1): 91-100. |
[13] | Shijie WANG, Tianbo FENG, Ning SUN, Ke HE, Jiawen LI, Cheng YANG, Haoyang CUI. Optimal Scheduling Strategy for Virtual Power Plant Considering Electricity-Gas-Heat Coupling and Demand Response [J]. Electric Power, 2024, 57(1): 101-114. |
[14] | Zhao LIU, Qingkai SUN, Zekai XU, Xiaoyu WU, Xiaojun WANG, Jinling LV. System, Applications and Challenges of Digital Twin Technology in Energy Internet [J]. Electric Power, 2024, 57(1): 230-243. |
[15] | WANG Jinli, LI Fengsheng, XIE Fang, ZHANG Yao, TIAN Ye. Research on Technical Standard System of New Distribution System Under Double-Carbon Strategy [J]. Electric Power, 2023, 56(5): 22-31. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||