Electric Power ›› 2024, Vol. 57 ›› Issue (1): 9-17.DOI: 10.11930/j.issn.1004-9649.202307100
• Construction and Operation of Virtual Power Plants • Previous Articles Next Articles
Ying ZHOU1(), Xuefeng BAI2(
), Yang WANG3(
), Min QIU1(
), Chong SUN4(
), Yajie WU1(
), Bin LI2(
)
Received:
2023-07-26
Accepted:
2023-10-24
Online:
2024-01-23
Published:
2024-01-28
Supported by:
Ying ZHOU, Xuefeng BAI, Yang WANG, Min QIU, Chong SUN, Yajie WU, Bin LI. Analysis and Evolution Trend of Temperature-Sensitive Loads for Virtual Power Plant Operation[J]. Electric Power, 2024, 57(1): 9-17.
项目 | 相关系数 | |||||
总负荷 | 温度敏感负荷 | 基础负荷 | ||||
最高温度 | –0.69 | –0.74 | –0.34 | |||
平均温度 | –0.72 | –0.77 | –0.20 | |||
最低温度 | –0.70 | –0.74 | –0.32 | |||
风速 | –0.44 | –0.23 | 0.17 | |||
湿度 | 0.15 | 0.20 | –0.16 | |||
寒湿指数 | 0.70 | 0.67 | 0.35 | |||
体感温度 | –0.75 | –0.78 | –0.28 | |||
人体舒适度 | –0.74 | –0.77 | –0.34 |
Table 1 The correlation coefficient between meteorological factors and different loads
项目 | 相关系数 | |||||
总负荷 | 温度敏感负荷 | 基础负荷 | ||||
最高温度 | –0.69 | –0.74 | –0.34 | |||
平均温度 | –0.72 | –0.77 | –0.20 | |||
最低温度 | –0.70 | –0.74 | –0.32 | |||
风速 | –0.44 | –0.23 | 0.17 | |||
湿度 | 0.15 | 0.20 | –0.16 | |||
寒湿指数 | 0.70 | 0.67 | 0.35 | |||
体感温度 | –0.75 | –0.78 | –0.28 | |||
人体舒适度 | –0.74 | –0.77 | –0.34 |
模型方法 | 直接预测总负荷 | 预测温度敏感负荷+ 基础负荷 | ||||||
EMA/(万kW) | EMAP/% | EMA/(万kW) | EMAP/% | |||||
多元线性回归 | 86.11 | 0.99 | 82.68 | 0.96 | ||||
BP神经网络 | 158.88 | 1.82 | 150.06 | 1.74 | ||||
LSTM | 171.19 | 1.95 | 78.20 | 0.91 | ||||
CNN-LSTM | 159.60 | 1.83 | 75.10 | 0.86 | ||||
TimeGAN-CNN-LSTM | 51.20 | 0.59 | 39.98 | 0.46 |
Table 2 Error analysis
模型方法 | 直接预测总负荷 | 预测温度敏感负荷+ 基础负荷 | ||||||
EMA/(万kW) | EMAP/% | EMA/(万kW) | EMAP/% | |||||
多元线性回归 | 86.11 | 0.99 | 82.68 | 0.96 | ||||
BP神经网络 | 158.88 | 1.82 | 150.06 | 1.74 | ||||
LSTM | 171.19 | 1.95 | 78.20 | 0.91 | ||||
CNN-LSTM | 159.60 | 1.83 | 75.10 | 0.86 | ||||
TimeGAN-CNN-LSTM | 51.20 | 0.59 | 39.98 | 0.46 |
1 | 辛保安: 2022年国家电网全年电网投资超5000亿元[EB/OL]. (2023-01-12) [2023-03-12]. http://hn.people.com.cn/GB/n2/2023/0112/c356884-40263848.html. |
2 | 赵建立, 向佳霓, 汤卓凡, 等. 虚拟电厂在上海的实践探索与前景分析[J]. 中国电力, 2023, 56 (2): 1- 13. |
ZHAO Jianli, XIANG Jiani, TANG Zhuofan, et al. Practice exploration and prospect analysis of virtual power plant in Shanghai[J]. Electric Power, 2023, 56 (2): 1- 13. | |
3 |
康重庆, 陈启鑫, 苏剑, 等. 新型电力系统规模化灵活资源虚拟电厂科学问题与研究框架[J]. 电力系统自动化, 2022, 46 (18): 3- 14.
DOI |
KANG Chongqing, CHEN Qixin, SU Jian, et al. Scientific problems and research framework of virtual power plant with enormous flexible distributed energy resources in new power system[J]. Automation of Electric Power Systems, 2022, 46 (18): 3- 14.
DOI |
|
4 |
谢敏, 邓佳梁, 刘明波, 等. 基于气象信息和熵权理论的降温负荷估算方法[J]. 电力系统自动化, 2016, 40 (3): 135- 139.
DOI |
XIE Min, DENG Jialiang, LIU Mingbo, et al. Temperature-lowering load estimation method based on meteorological data and entropy weight theory[J]. Automation of Electric Power Systems, 2016, 40 (3): 135- 139.
DOI |
|
5 | 殷跃. 重庆电网夏季高峰负荷特性分析及优化措施[J]. 宁夏电力, 2021, (5): 28- 33, 43. |
YIN Yue. Characteristic analysis of summer peak load and optimization measures in Chongqing power grid[J]. Ningxia Electric Power, 2021, (5): 28- 33, 43. | |
6 | 史静, 周琪, 谈健, 等. 江苏电网夏季空调负荷特性挖掘与温度敏感性辨识[J]. 电力工程技术, 2018, 37 (3): 28- 32. |
SHI Jing, ZHOU Qi, TAN Jian, et al. The load excavation and temperature sensitivity identification of air conditioning in summer of Jiangsu power grid[J]. Electric Power Engineering Technology, 2018, 37 (3): 28- 32. | |
7 | 袁斌. 陕西电网夏季降温负荷与温度相关性研究[J]. 电网与清洁能源, 2020, 36 (6): 19- 24, 30. |
YUAN Bin. Correlation analysis of cooling load and temperature in Shaanxi power grid in summer[J]. Power System and Clean Energy, 2020, 36 (6): 19- 24, 30. | |
8 | 郭占伍, 张泽亚, 周兴华, 等. 考虑气象因素的电采暖负荷预测研究[J]. 电测与仪表, 2022, 59 (2): 154- 158. |
GUO Zhanwu, ZHANG Zeya, ZHOU Xinghua, et al. Study on forecasting method of electric heating load considering meteorological factors[J]. Electrical Measurement & Instrumentation, 2022, 59 (2): 154- 158. | |
9 | 张航, 杨靖, 李昊霖. 基于改进回归模型的电网降温负荷预测[J]. 控制工程, 2023, 30 (3): 513- 519. |
ZHANG Hang, YANG Jing, LI Haolin. Power grid cooling load forecast based on improved regression model[J]. Control Engineering of China, 2023, 30 (3): 513- 519. | |
10 |
金丽莉, 谭风雷, 吴志坚, 等. 考虑积温效应的负荷预测研究[J]. 电力需求侧管理, 2013, 15 (1): 7- 10, 14.
DOI |
JIN Lili, TAN Fenglei, WU Zhijian, et al. The study of load forecasting accounting accumulated temperature effect[J]. Power Demand Side Management, 2013, 15 (1): 7- 10, 14.
DOI |
|
11 | 董莉娜, 张志劲, 王茂政. 基于历史天气的区域电网负荷预测的研究[J/OL]. 中国测试: 1–7[2023-06-16]. https://kns.cnki.net/kcms/detail/51.1714.TB.20210722.0952.002.html. |
DONG Lina, ZHANG Zhijin, WANG Maozheng. Research on regional power grid load forecasting based on historical weather[J/OL]. China Measurement & Test: 1–7[2023-06-16]. https://kns.cnki.net/kcms/detail/51.1714.TB.20210722.0952.002.html. | |
12 | 苏振宇, 龙勇, 赵丽艳. 基于regARIMA模型的月度负荷预测效果研究[J]. 中国电力, 2018, 51 (5): 166- 171. |
SU Zhenyu, LONG Yong, ZHAO Liyan. Study on the monthly power load forecasting performance based on regARIMA model[J]. Electric Power, 2018, 51 (5): 166- 171. | |
13 | 成丹, 刘静, 郭淳薇, 等. 基于积温效应的华中电网电力负荷预测[J]. 气象科技, 2018, 46 (4): 814- 821. |
CHENG Dan, LIU Jing, GUO Chunwei, et al. Prediction of electric loads over central China based on accumulated temperature effect[J]. Meteorological Science and Technology, 2018, 46 (4): 814- 821. | |
14 | 李晨熙. 基于ARIMA模型的短期电力负荷预测[J]. 吉林电力, 2015, 43 (6): 22- 24. |
LI Chenxi. A short-term load forecasting model based on ARIMA[J]. Jilin Electric Power, 2015, 43 (6): 22- 24. | |
15 |
李明节, 梁志峰, 许涛, 等. 基于敏感气温空间分布的度夏度冬日最大负荷预测与应用研究[J]. 电网技术, 2023, 47 (3): 1088- 1098.
DOI |
LI Mingjie, LIANG Zhifeng, XU Tao, et al. Prediction and application of maximum daily load in summer and winter based on spatial distribution of sensitive temperatures[J]. Power System Technology, 2023, 47 (3): 1088- 1098.
DOI |
|
16 |
CIECHULSKI T, OSOWSKI S. High precision LSTM model for short-time load forecasting in power systems[J]. Energies, 2021, 14 (11): 2983.
DOI |
17 | 贾巍, 黄裕春. 基于小样本数据差分扩容的微电网负荷预测方法[J]. 中国电力, 2023, 56 (8): 151- 156, 165. |
JIA Wei, HUANG Yuchun. Method of load forecasting in microgrid based on differential expansion of small sample data[J]. Electric Power, 2023, 56 (8): 151- 156, 165. | |
18 |
STEADMAN R G. A universal scale of apparent temperature[J]. Journal of Climate and Applied Meteorology, 1984, 23 (12): 1674- 1687.
DOI |
19 | 王汶, 彭爱珺, 张佳丽, 等. 基于体感温度的中国供暖需求分区[J]. 长江流域资源与环境, 2019, 28 (1): 12- 20. |
WANG Wen, PENG Aijun, ZHANG Jiali, et al. Heating demand zoning in China based on apparent temperature[J]. Resources and Environment in the Yangtze Basin, 2019, 28 (1): 12- 20. | |
20 |
王惠中, 刘轲, 周佳. 基于综合气象指数和日期类型的电力系统负荷预测[J]. 电网与清洁能源, 2015, 31 (9): 67- 71.
DOI |
WANG Huizhong, LIU Ke, ZHOU Jia. Power system load forecasting based on comprehensive meteorological index and date type[J]. Power System and Clean Energy, 2015, 31 (9): 67- 71.
DOI |
|
21 | 黄佳. 全天候电网特殊日短期负荷预测建模[D]. 南宁: 广西大学, 2017. |
HUANG Jia. Modeling of power system short-term load forecasting for special day in all-weather[D]. Nanning: Guangxi University, 2017. | |
22 | 许飞. 基于机器学习的短期负荷预测[D]. 广州: 华南理工大学, 2020. |
XU Fei. Short-term load forecasting based on machine learning[D]. Guangzhou: South China University of Technology, 2020. | |
23 | 中国气象局: 寒潮定义和标准[EB/OL]. (2018-11-19) [2023-03-19].https://www.cma.gov.cn/2011xzt/kpbd/ColdWave/2018050901/201811/t20181119_483585.html. |
24 | YOON J , JARRETT D , SCHAAR M . Time-series generative adversarial networks[C]// Neural Information Processing Systems (NeurIPS). 2019. |
25 |
林珊, 王红, 齐林海, 等. 基于条件生成对抗网络的短期负荷预测[J]. 电力系统自动化, 2021, 45 (11): 52- 60.
DOI |
LIN Shan, WANG Hong, QI Linhai, et al. Short-term load forecasting based on conditional generative adversarial network[J]. Automation of Electric Power Systems, 2021, 45 (11): 52- 60.
DOI |
|
26 |
叶林, 李奕霖, 裴铭, 等. 寒潮天气小样本条件下的短期风电功率组合预测[J]. 中国电机工程学报, 2023, 43 (2): 543- 555.
DOI |
YE Lin, LI Yilin, PEI Ming, et al. Combined approach for short-term wind power forecasting under cold weather with small sample[J]. Proceedings of the CSEE, 2023, 43 (2): 543- 555.
DOI |
|
27 | 郭威, 史运涛. 基于空间域图像生成和混合卷积神经网络的配电网故障选线方法[J/OL]. 电网技术: 1–14[2023-03-22]. http://kns.cnki.net/kcms/detail/11.2410.tm.20230310.1705.003.html. |
Guo Wei, Shi Yuntao. A Fault Line Selection Method for Distribution Network Based on Spatial Domain Image Generation and Hybrid Convolutional Neural Network [J/OL]. Power System Technology: 1–14 [2023-03-22]. http://kns.cnki.net/kcms/detail/11.2410.tm.20230310.1705.003.html. | |
28 | 余昊杨, 武昕. 基于一维卷积神经网络的非侵入工业负荷事件检测方法[J]. 计算机应用, 2022, 42 (S2): 277- 284. |
YU Haoyang, WU Xin. Non-invasive industrial load event detection method based on one-dimensional convolutional neural network[J]. Journal of Computer Applications, 2022, 42 (S2): 277- 284. | |
29 |
张未, 余成波, 王士彬, 等. 基于VMD-LSTM-LightGBM的多特征短期电力负荷预测[J]. 南方电网技术, 2023, 17 (2): 74- 81.
DOI |
ZHANG Wei, YU Chengbo, WANG Shibin, et al. Multi-featured short-term power load forecasting based on VMD-LSTM-LightGBM[J]. Southern Power System Technology, 2023, 17 (2): 74- 81.
DOI |
[1] | WANG Jinfeng, LI Jinpeng, XU Yinliang, LIU Haitao, HE Jinxiong, XU Jianyuan. Distributed Optimization for VPP and Distribution Network Operation Considering Uncertainty and Green Certificate Market [J]. Electric Power, 2025, 58(4): 21-30, 192. |
[2] | Mingbing LI, Qiang LI, Xiyang GUAN, Haoyang ZHOU, Rui LU, Yankun FENG. Market Oriented Low-Carbon Optimal Scheduling of Virtual Power Plants Considering Multiple User-Side Resources Coordination [J]. Electric Power, 2025, 58(2): 66-76. |
[3] | Ke YANG, Dong WANG, Da LI, Wangjun ZHANG, Ga XIANG, Jun LI. Network Security Risk Assessment Index System and Calculation for Virtual Power Plant [J]. Electric Power, 2024, 57(8): 130-137. |
[4] | Qihe LOU, Rongsheng LI, Jie TAN, Tiejiang YUAN. Calculation of Transient Stability Limit Based on Convolutional Neural Network [J]. Electric Power, 2024, 57(4): 211-219. |
[5] | Zhongkai YI, Langbo HOU, Ying XU, Yongfeng WU, Zhimin LI, Junfei WU, Teng FENG, Liu HAN. Aggregation and Operation Key Technology of Virtual Power Plant with Flexible Resources in Electricity Market Environment: Review [J]. Electric Power, 2024, 57(12): 82-96. |
[6] | Tianqi SONG, Zhipeng LV, Zhenhao SONG, Yunting MA, Zhihui ZHANG, Shan ZHOU, Hao LI. Research and Thinking on the Aggregation and Dispatching Control Framework of Virtual Power Plant's Large Scale Flexible Resources [J]. Electric Power, 2024, 57(1): 2-8. |
[7] | Rui ZHU, Yiding OU, Xiaotian LI, Xingyu LEI, Yuqing ZHOU, Poyang ZHANG, Rui OU. Evaluation of Virtual Power Plant Flexibility Resources Based on External Characteristic Equivalence [J]. Electric Power, 2024, 57(1): 30-39. |
[8] | Mengfei XIE, Gaoquan MA, Bin LIU, Zhenning PAN, Yunfeng SHANG. Virtual Power Plant Quotation Strategy Based on Information Gap Decision Theory [J]. Electric Power, 2024, 57(1): 40-50. |
[9] | Yunchen FENG, Heping JIA, Min YAN, Genzhu LI, Le LIU, Dunnan LIU. Operation Optimization Method for Virtual Power Plant Participating in Clean Heating Based on Time-of-Use Tariff of Wind Power [J]. Electric Power, 2024, 57(1): 51-60. |
[10] | Ting ZHOU, Yudong TAN, Jin SUN, Ming WEN, Jing LIAO, Yang LI, Gong LIU, Dunnan LIU. Collaborative Optimization Strategy for Virtual Power Plant Participating in Energy and Ancillary Service Market [J]. Electric Power, 2024, 57(1): 61-70. |
[11] | Shuhan ZHANG, Qian AI, Xiaolu LI, Di WANG. Improved PBFT Consensus Mechanism for Multi-virtual Power Plant Transactions [J]. Electric Power, 2024, 57(1): 71-81, 157. |
[12] | Ying ZHANG, Yan WEN, Yu JI, Juan ZUO, Wenbo WANG. Calculation of Day-Ahead Frequency Regulation Capacity for Virtual Power Plants Based on Analytical Target Cascading Method [J]. Electric Power, 2024, 57(1): 82-90. |
[13] | Chao ZHANG, Dongmei ZHAO, Yu JI, Ying ZHANG. Real Time Optimal Dispatch of Virtual Power Plant Based on Improved Deep Q Network [J]. Electric Power, 2024, 57(1): 91-100. |
[14] | Shijie WANG, Tianbo FENG, Ning SUN, Ke HE, Jiawen LI, Cheng YANG, Haoyang CUI. Optimal Scheduling Strategy for Virtual Power Plant Considering Electricity-Gas-Heat Coupling and Demand Response [J]. Electric Power, 2024, 57(1): 101-114. |
[15] | Daxing WANG, Yan Ning, Jingpei WANG, Yang XU, Jun BI, Mingbiao ZHOU, Peng WANG. Robust Simplified Modeling of Microgrid in the Context of Constructing New Power Systems [J]. Electric Power, 2024, 57(1): 148-157. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||