Electric Power ›› 2025, Vol. 58 ›› Issue (6): 67-75.DOI: 10.11930/j.issn.1004-9649.202406062
• Data-Driven Analysis and Control of Power System Security and Stability • Previous Articles Next Articles
XIAO Xiangqi1,2(), ZOU Sheng1,2, HE Xing1,2, XIAO Jianhong1,2, MA Bin1,2
Received:
2024-06-18
Online:
2025-06-30
Published:
2025-06-28
Supported by:
XIAO Xiangqi, ZOU Sheng, HE Xing, XIAO Jianhong, MA Bin. Output Power Optimization of Photovoltaic and Energy Storage Hybrid System Based on Fuzzy Control Algorithm[J]. Electric Power, 2025, 58(6): 67-75.
参数 | 数值 | 参数 | 数值 | |||
储能直流侧电压/V | 800 | PCS额定运行功率/kW | 15 | |||
电网电压/V | 380 | PCS转换功率下限/kW | 6 | |||
储能交流侧电感/mH | 21 | SOH1/% | 95 | |||
SOH2/% | 90 | SOH3/% | 85 |
Table 1 Partial simulation parameters
参数 | 数值 | 参数 | 数值 | |||
储能直流侧电压/V | 800 | PCS额定运行功率/kW | 15 | |||
电网电压/V | 380 | PCS转换功率下限/kW | 6 | |||
储能交流侧电感/mH | 21 | SOH1/% | 95 | |||
SOH2/% | 90 | SOH3/% | 85 |
控 制 策 略 | 场 景 | Pref/ kW | THD/ % | Pbatt1/ kW | Pbatt2/ kW | Pbatt3/ kW | Idc1/ A | Idc2/ A | Idc3/ A | 消耗电池额 定容量160% 下的老化循 环圈数 | ||||||||||
本 文 控 制 策 略 | 1 | 15 | 2.50 | 7.70 | 7.30 | 0.0 | 18.0 | 17.0 | 0.0 | |||||||||||
2 | 18 | 2.30 | 9.30 | 8.70 | 0.0 | 21.7 | 20.3 | 0.0 | ||||||||||||
3 | 23 | 2.54 | 8.13 | 7.67 | 7.2 | 19.2 | 18.0 | 16.8 | ||||||||||||
4 | 30 | 2.23 | 10.60 | 10.00 | 9.4 | 24.7 | 23.3 | 21.9 | ||||||||||||
5 | 42 | 1.45 | 14.80 | 14.00 | 13.2 | 34.6 | 32.7 | 30.7 | ||||||||||||
传 统 控 制 策 略 | 1 | 15 | 1.31 | 15.00 | 0.00 | 0.0 | 35.0 | 0.0 | 0.0 | 0.862 5 | ||||||||||
2 | 18 | 1.94 | 15.00 | 3.00 | 0.0 | 35.0 | 7.0 | 0.0 | 0.808 9 | |||||||||||
3 | 23 | 1.63 | 15.00 | 8.00 | 0.0 | 35.0 | 19.0 | 0.0 | 0.813 1 | |||||||||||
4 | 30 | 1.32 | 15.00 | 15.00 | 0.0 | 35.0 | 35.0 | 0.0 | ||||||||||||
5 | 42 | 1.46 | 15.00 | 15.00 | 12.0 | 35.0 | 35.0 | 28.0 |
Table 2 Grid-connected conditions of the energy storage system under different active power levels
控 制 策 略 | 场 景 | Pref/ kW | THD/ % | Pbatt1/ kW | Pbatt2/ kW | Pbatt3/ kW | Idc1/ A | Idc2/ A | Idc3/ A | 消耗电池额 定容量160% 下的老化循 环圈数 | ||||||||||
本 文 控 制 策 略 | 1 | 15 | 2.50 | 7.70 | 7.30 | 0.0 | 18.0 | 17.0 | 0.0 | |||||||||||
2 | 18 | 2.30 | 9.30 | 8.70 | 0.0 | 21.7 | 20.3 | 0.0 | ||||||||||||
3 | 23 | 2.54 | 8.13 | 7.67 | 7.2 | 19.2 | 18.0 | 16.8 | ||||||||||||
4 | 30 | 2.23 | 10.60 | 10.00 | 9.4 | 24.7 | 23.3 | 21.9 | ||||||||||||
5 | 42 | 1.45 | 14.80 | 14.00 | 13.2 | 34.6 | 32.7 | 30.7 | ||||||||||||
传 统 控 制 策 略 | 1 | 15 | 1.31 | 15.00 | 0.00 | 0.0 | 35.0 | 0.0 | 0.0 | 0.862 5 | ||||||||||
2 | 18 | 1.94 | 15.00 | 3.00 | 0.0 | 35.0 | 7.0 | 0.0 | 0.808 9 | |||||||||||
3 | 23 | 1.63 | 15.00 | 8.00 | 0.0 | 35.0 | 19.0 | 0.0 | 0.813 1 | |||||||||||
4 | 30 | 1.32 | 15.00 | 15.00 | 0.0 | 35.0 | 35.0 | 0.0 | ||||||||||||
5 | 42 | 1.46 | 15.00 | 15.00 | 12.0 | 35.0 | 35.0 | 28.0 |
名称 | 参数 | 名称 | 参数 | |||
电池类型 | LiNiMnCoO2 | 电池规格 | 2.2 mg*180(mA·h·g–1) | |||
充电截止 电压/V | 4.3 | 放电截止 电压/V | 2.5 | |||
在C/5下的标称 容量/(mA·h) | 0.4 | 电压保护 上限/V | 5 | |||
电压保护下限/V | 0.5 | 脉冲精度/ms | 1 | |||
恒温箱温度/℃ | 30 |
Table 3 Some parameters of the experimental equipment
名称 | 参数 | 名称 | 参数 | |||
电池类型 | LiNiMnCoO2 | 电池规格 | 2.2 mg*180(mA·h·g–1) | |||
充电截止 电压/V | 4.3 | 放电截止 电压/V | 2.5 | |||
在C/5下的标称 容量/(mA·h) | 0.4 | 电压保护 上限/V | 5 | |||
电压保护下限/V | 0.5 | 脉冲精度/ms | 1 | |||
恒温箱温度/℃ | 30 |
实验组 | A类电池 充放电电 流/mA | B类电池 充放电电 流/mA | C类电池 充放电电 流/mA | 消耗相同容量 下电池最大容 量衰减/% | ||||
1 | 0.205 | 0.195 | 2.189 | |||||
2 | 0.246 | 0.234 | 2.305 | |||||
3 | 0.216 | 0.204 | 0.193 | 2.201 | ||||
4 | 0.281 | 0.267 | 0.252 | 2.377 | ||||
5 | 0.394 | 0.373 | 0.353 | 2.637 | ||||
6 | 0.400 | 2.693 | ||||||
7 | 0.400 | 0.080 | 2.166 | |||||
8 | 0.400 | 0.217 | 2.464 | |||||
9 | 0.400 | 0.400 | 2.693 | |||||
10 | 0.400 | 0.400 | 0.320 | 2.639 |
Table 4 Design and experimental results of battery charging and discharging current
实验组 | A类电池 充放电电 流/mA | B类电池 充放电电 流/mA | C类电池 充放电电 流/mA | 消耗相同容量 下电池最大容 量衰减/% | ||||
1 | 0.205 | 0.195 | 2.189 | |||||
2 | 0.246 | 0.234 | 2.305 | |||||
3 | 0.216 | 0.204 | 0.193 | 2.201 | ||||
4 | 0.281 | 0.267 | 0.252 | 2.377 | ||||
5 | 0.394 | 0.373 | 0.353 | 2.637 | ||||
6 | 0.400 | 2.693 | ||||||
7 | 0.400 | 0.080 | 2.166 | |||||
8 | 0.400 | 0.217 | 2.464 | |||||
9 | 0.400 | 0.400 | 2.693 | |||||
10 | 0.400 | 0.400 | 0.320 | 2.639 |
1 | 夏向阳, 谭欣欣, 单周平, 等. 储能电站锂离子电池本体安全关键技术及新技术应用情况[J]. 中国电力, 2024, 57 (11): 1- 17. |
XIA Xiangyang, TAN Xinxin, SHAN Zhouping, et al. Key technology and development prospect of ontology safety for lithium-ion battery storage power stations[J]. Electric Power, 2024, 57 (11): 1- 17. | |
2 | 朱沐雨, 马宏忠, 郭鹏宇, 等. 典型调峰/调频工况下储能电池组荷电状态估计[J]. 中国电力, 2024, 57 (6): 18- 26. |
ZHU Muyu, MA Hongzhong, GUO Pengyu, et al. State of charge estimation of energy storage battery pack under typical peak/frequency modulation conditions[J]. Electric Power, 2024, 57 (6): 18- 26. | |
3 | 和萍, 刘鑫, 宫智杰, 等. 高比例可再生能源电力系统源荷储联合调峰分层优化运行[J]. 电力系统保护与控制, 2024, 52 (18): 112- 122. |
HE Ping, LIU Xin, GONG Zhijie, et al. Hierarchical optimization operation model for joint peak-load regulation of source-load-storagein a high proportion of renewable energy power system[J]. Power System Protection and Control, 2024, 52 (18): 112- 122. | |
4 | 郑涛, 孟令昆, 强雨泽, 等. 计及SOC影响的电化学储能系统低电压穿越控制策略[J]. 电力系统保护与控制, 2024, 52 (13): 171- 178. |
ZHENG Tao, MENG Lingkun, QIANG Yuzhe, et al. Low voltage ride through control strategy for electrochemical energy storage system considering SOC influence[J]. Power System Protection and Control, 2024, 52 (13): 171- 178. | |
5 | 贺悝, 郭罗权, 谭庄熙, 等. 高比例新能源电网中储能调频死区优化设定控制策略[J]. 电力系统保护与控制, 2024, 52 (18): 65- 75. |
HE Li, GUO Luoquan, TAN Zhuangxi, et al. Improved dead zone setting of a frequency regulation strategy for energy storage with high penetration of RESs[J]. Power System Protection and Control, 2024, 52 (18): 65- 75. | |
6 | 孙建华, 王佳旭, 杜晓勇, 等. 考虑频率安全约束的高比例风电电力系统储能优化配置策略[J]. 电力科学与技术学报, 2024, 39 (5): 151- 162. |
SUN Jianhua , WANG Jiaxu, DU Xiaoyong, et al. Optimization strategy for energy storage configuration in high proportion wind power system considering frequency safety constraints[J]. Journal of Electric Power Science and Technology, 2024, 39 (5): 151- 162. | |
7 | 鲁志远, 刘世林, 范保程, 等. 含广域混合储能互联电力系统的负荷频率控制[J]. 电力科学与技术学报, 2023, 38 (6): 96- 104. |
LU Zhiyuan, LIU Shilin, FAN Baocheng, et al. Load frequency control of interconnected power system with wide-area hybrid energy storage[J]. Journal of Electric Power Science and Technology, 2023, 38 (6): 96- 104. | |
8 | 郑明才, 罗治军, 尹强等. 面向直流操作电源系统的LiFePO4电池性能优化控制研究[J]. 电源学报, 2023, 21 (1): 159- 167. |
ZHENG Mingcai, LUO Zhijun, YIN Qiang, et al. Optimal control of LiFePO4 battery performance for DC operating power systems[J]. Journal of Power Supply, 2023, 21 (1): 159- 167. | |
9 | 岳家辉, 夏向阳, 蒋戴宇, 等. 基于电压数据片段混合模型的锂离子电池剩余寿命预测与健康状态估计[J]. 中国电力, 2023, 56 (7): 163- 174. |
YUE Jiahui, XIA Xiangyang, JIANG Daiyu, et al. Remaining useful life prediction and state of health estimation of lithium-ion batteries based on voltage data segment hybrid model[J]. Electric Power, 2023, 56 (7): 163- 174. | |
10 | 夏向阳, 陈贵全, 刘俊翔, 等. 储能系统直流侧纹波电流对锂离子电池寿命影响分析及优化控制策略[J]. 电工技术学报, 2023, 38 (22): 6218- 6229. |
XIA Xiangyang, CHEN Guiquan, LIU Junxiang, et al. Analysis and optimization control strategy of the impact of DC ripple current on the lifespan of lithium-ion batteries in energy storage systems[J]. Journal of Electrical Engineering, 2023, 38 (22): 6218- 6229. | |
11 | 彭昊, 罗正经, 夏向阳, 等. 储能系统多电池簇健康状态均衡控制策略[J]. 中国电力, 2024, 57 (6): 45- 52. |
PENG Hao, LUO Zhengjing, XIA Xiangyang, et al. Health state balance control strategy for multi battery clusters in energy storage systems[J]. Electric Power, 2024, 57 (6): 45- 52. | |
12 |
LI X N, GENG G C, JIANG Q Y, et al. Consensus-based multi-converter power allocation strategy in battery energy storage system[J]. Journal of Energy Storage, 2023, 60, 106623.
DOI |
13 |
LI X N, LYU L X, GENG G C, et al. Power allocation strategy for battery energy storage system based on cluster switching[J]. IEEE Transactions on Industrial Electronics, 2022, 69 (4): 3700- 3710.
DOI |
14 | 霍俊达, 王毅. 兼顾平抑波动与储能保护的混合储能优化策略[J/OL]. 华北电力大学学报(自然科学版), 1−12[2024-08-14]. http://kns.cnki.net/kcms/detail/13.1212.tm.20240612.1415.002.html. |
HUO Junda, WANG Yi. Hybrid energy storage optimization strategy that balances smoothing fluctuations and energy storage protection[J/OL]. Journal of North China Electric Power University (Natural Science Edition), 1−12 [2024-08-14]. http://kns.cnki.net/kcms/detail/13.1212.tm.20240612.1415.002.html. | |
15 | 林莉, 林雨露, 谭惠丹, 等. 计及SOC自恢复的混合储能平抑风电功率波动控制[J]. 电工技术学报, 2024, 39 (3): 658- 671. |
LIN Li, LIN Yulu, TAN Huidan, et al. Hybrid energy storage control with SOC self-recovery to smooth out wind power fluctuations[J]. Transactions of China Electrotechnical Society, 2024, 39 (3): 658- 671. | |
16 | 余洋, 王卜潇, 吴玉威, 等. 面向光伏平抑考虑SOH与SOC的电池储能系统功率分配方法[J]. 太阳能学报, 2024, 45 (3): 377- 388. |
YU Yang, WANG Buxiao, WU Yuwei, et al. Power allocation method for battery energy storage systems considering SOH and SOC for photovoltaic stabilization[J]. Acta Energiae Solaris Sinica, 2024, 45 (3): 377- 388. | |
17 | 李建林, 李雅欣, 刘海涛, 等. 计及储能电站安全性的功率分配策略研究[J]. 电工技术学报, 2022, 37 (23): 5976- 5986. |
LI Jianlin, LI Yaxin, LIU Haitao, et al. Research on power distribution strategy considering the safety of energy storage power station[J]. Transactions of China Electrotechnical Society, 2022, 37 (23): 5976- 5986. | |
18 |
TREMBLAY O, DESSAINT L A. Experimental validation of a battery dynamic model for EV applications[J]. World Electric Vehicle Journal, 2009, 3 (2): 289- 298.
DOI |
19 |
OMAR N, ABDEL MONEM M, FIROUZ Y, et al. Lithium iron phosphate based battery–Assessment of the aging parameters and development of cycle life model[J]. Applied Energy, 2014, 113, 1575- 1585.
DOI |
20 | Simulink: Generic battery model[EB/OL]. https://www.mathworks.com/help/releases/R2022a/physmod/sps/powersys/ref/battery.html. |
21 | 王聪聪, 叶思成, 裴春兴, 等. 电池健康状态实验与评估方法综述[J]. 电池, 2021, 51 (2): 197- 200. |
WANG Congcong, YE Sicheng, PEI Chunxing, et al. Review on battery state-of-health experiment and estimation methods[J]. Battery Bimonthly, 2021, 51 (2): 197- 200. | |
22 | 黎冲, 王成辉, 王高, 等. 基于数据驱动的锂离子电池健康状态估计技术[J]. 中国电力, 2022, 55 (8): 73- 86, 95. |
LI Chong, WANG Chenghui, WANG Gao, et al. Technology of lithium-ion battery state-of-health assessment based on data-driven[J]. Electric Power, 2022, 55 (8): 73- 86, 95. | |
23 | VETTER J, NOVÁK P, WAGNER M R, et al. Ageing mechanisms in lithium-ion batteries[J]. Journal of Power Sources, 2005, 147 (1/2): 269- 281. |
24 |
CHANG L J, CHEN W Y, MAO Z Y, et al. Experimental study on the effect of ambient temperature and discharge rate on the temperature field of prismatic batteries[J]. Journal of Energy Storage, 2023, 59, 106577.
DOI |
25 |
BESSMAN A, SOARES R, WALLMARK O, et al. Aging effects of AC harmonics on lithium-ion cells[J]. Journal of Energy Storage, 2019, 21, 741- 749.
DOI |
26 | BALA S, TENGNÉR T, ROSENFELD P, et al. The effect of low frequency current ripple on the performance of a Lithium Iron Phosphate (LFP) battery energy storage system[C]//2012 IEEE Energy Conversion Congress and Exposition (ECCE). Raleigh, NC, USA. IEEE, 2012: 3485−3492. |
27 |
BRAND M J, HOFMANN M H, SCHUSTER S S, et al. The influence of current ripples on the lifetime of lithium-ion batteries[J]. IEEE Transactions on Vehicular Technology, 2018, 67 (11): 10438- 10445.
DOI |
28 | 张雪. 非隔离型光伏并网逆变器高效MPPT控制方法研究[D]. 广州: 华南理工大学, 2012. |
ZHANG Xue. Study of high efficiency MPPT control method of non-isolated grid-connected PV inverter[D]. Guangzhou: South China University of Technology, 2012. | |
29 | 张思章. 高频隔离型并网逆变器的研制[D]. 广州: 华南理工大学, 2012. |
ZHANG Sizhang. Development of high frequency isolated grid-connected inverter[D]. Guangzhou: South China University of Technology, 2012. | |
30 | 茆书睿, 李熹宁. 基于电池状态的储能电站集群调度策略[J]. 太阳能学报, 2023, 44 (8): 54- 61. |
MAO Shurui, LI Xining. Cluster dispatch strategy for energy storage power station based on battery state[J]. Acta Energiae Solaris Sinica, 2023, 44 (8): 54- 61. | |
31 | 朱晔, 兰贞波, 隗震, 等. 考虑碳排放成本的风光储多能互补系统优化运行研究[J]. 电力系统保护与控制, 2019, 47 (10): 127- 133. |
ZHU Ye, LAN Zhenbo, WEI Zhen, et al. Research on optimal operation of wind-PV-ES complementary system considering carbon emission cost[J]. Power System Protection and Control, 2019, 47 (10): 127- 133. |
[1] | ZHANG Jie, HUA Yufei, WANG Chen. A Demand Side Adjustment Capacity Sharing Model Based on Cooperative Game [J]. Electric Power, 2025, 58(6): 45-55. |
[2] | QIN Kun, QU Zhijiang, HAN Jianwei, XU Tao, GAO Feng, CHI Xiaoli. Battery Optimization Operation Strategy for the "SOP-Storage-Charger" Devices Based on Adjustable Virtual Impedance [J]. Electric Power, 2025, 58(6): 145-155. |
[3] | Lei ZHANG, Xiaowei MA, Manliang WANG, Li CHEN, Bingtuan GAO. Distributed Collaborative Control Strategy for Intra-regional AGC Units in Interconnected Power System with Renewable Energy [J]. Electric Power, 2025, 58(3): 8-19. |
[4] | Yuqing WANG, Min ZHANG, Jiaxing WANG, Bohao LI, Tianyang YANG, Ming ZENG. Rental Price Decision of Shared Energy Storage Capacity Based on Supermodular Game [J]. Electric Power, 2025, 58(1): 164-173. |
[5] | Guomin QI, Tianye LI, Hong YU, Bolun LU, Baozhong MA, Wenxin ZHANG, Entong WU, Xianyao XIAO. Capacity Allocation and Operation Optimization Model of Household Photovoltaic-Storage System Based on MPC [J]. Electric Power, 2025, 58(1): 185-195. |
[6] | Luyang LI, Longxiang CHEN, Lei CHEN, Dawei SUN, Linlin WU, Yong MIN. Research on Economic Configuration of Energy Storage for Assisting New Energy in Primary Frequency Regulation [J]. Electric Power, 2024, 57(7): 54-65. |
[7] | Fengliang XU, Keqian WANG, Wenhao WANG, Peng WANG, Huanchang WANG, Shuai Zhang, Fengzhan ZHAO. Collaborative Expansion Planning of Source-Grid-Storage in Medium Voltage Distribution System Considering Operational Flexibility [J]. Electric Power, 2024, 57(7): 98-108. |
[8] | Hao PENG, Zhengjing LUO, Xiangyang XIA, Gang ZENG, Yujian OU, Guiquan CHEN, Jijun WANG, Lihong LIU. Health State Equalization Control Strategy for Multi-battery Clusters in Energy Storage Systems [J]. Electric Power, 2024, 57(6): 45-52. |
[9] | Jinglin HAN, Ping HU, Ruosong HOU, Zhiyong CHEN, Hongtao LI, Yuanyuan CHAI. Voltage Optimal Control Strategy for Distribution Networks with Multiple Integrated Photovoltaic and Energy Storage Machines [J]. Electric Power, 2024, 57(6): 69-77, 152. |
[10] | Yu CAO, Pengfei HU, Wanqi CAI, Xi WANG, Daozhuo JIANG, Yiqiao LIANG. MMC Based Super Capacitor and Battery Hybrid Energy Storage System and Hybrid Synchronous Control Strategy [J]. Electric Power, 2024, 57(6): 78-89. |
[11] | Cailing ZHANG, Shuang WANG, Shuna GE, Deng PAN, Yan ZHANG, Wei HAN, Wenyan DUAN. Optimal Scheduling of Integrated Energy Systems Considering Flexible Demand Response and Carbon Emission-Green Certificate Joint Trading [J]. Electric Power, 2024, 57(5): 14-25. |
[12] | Zimeng LI, Tiankuo WANG, Pengfei HU, Yanxue YU, Yi DU, Qiyuan CAI. Bi-level Collaborative Configuration Optimization of Biogas-Wind-Solar Integrated Energy System Based on Energy Hub [J]. Electric Power, 2024, 57(4): 1-13. |
[13] | Dongshun ZHANG, Hengli QUAN, Hua XIE, Zhihong XU, Yayun TAO, Huisheng WANG. Dispatching Strategy of Park-Level Integrated Energy System Considering Carbon Trading Mechanism and Hydrogen Blending Natural Gas [J]. Electric Power, 2024, 57(2): 183-193. |
[14] | Haiyan WANG, Linyu QIAN. Hybrid Energy Storage Power Allocation Strategy Based on NGO-VMD [J]. Electric Power, 2024, 57(11): 119-128. |
[15] | Yingjie HU, Qiang LI, Qun LI. Co-Optimization of Inertia and Droop Control Coefficient for Grid-Forming Photovoltaic-Storage System Considering Capacity Limits [J]. Electric Power, 2024, 57(10): 115-122. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||