Electric Power ›› 2024, Vol. 57 ›› Issue (6): 78-89.DOI: 10.11930/j.issn.1004-9649.202311047
• Key Technologies for Energy Storage Planning and Operation of New Power System • Previous Articles Next Articles
Yu CAO1(), Pengfei HU1(
), Wanqi CAI2(
), Xi WANG3(
), Daozhuo JIANG1(
), Yiqiao LIANG4
Received:
2023-11-10
Accepted:
2024-02-08
Online:
2024-06-23
Published:
2024-06-28
Supported by:
Yu CAO, Pengfei HU, Wanqi CAI, Xi WANG, Daozhuo JIANG, Yiqiao LIANG. MMC Based Super Capacitor and Battery Hybrid Energy Storage System and Hybrid Synchronous Control Strategy[J]. Electric Power, 2024, 57(6): 78-89.
结构 | 参数 | 标识 | 设置 | |||||||
网侧 | 电压等级/kV | Vbase | 10 | |||||||
额定频率/Hz | f0 | 50 | ||||||||
额定容量/(MV·A) | Sbase | 10 | ||||||||
线路电感(p.u.) | Ls | 0.2 | ||||||||
线路电阻(p.u.) | Rs | 0.002 | ||||||||
LC滤波器 | 串联电感(p.u.) | Lf | 0.2 | |||||||
电感寄生电阻(p.u.) | Rf | 0.02 | ||||||||
并联电容(p.u.) | Cf | 0.02 | ||||||||
电容寄生电阻(p.u.) | RCf | 0.1 | ||||||||
桥臂结构 | 单个桥臂子模块级联数 | N | 8 | |||||||
桥臂电感/mH | L0 | 12 | ||||||||
桥臂电阻/Ω | R0 | 0.1 | ||||||||
子模块内部并联电容/mF | C0 | 8.4 | ||||||||
蓄电池 | 单个额定电压/kV | VBr | 2.5 | |||||||
单个额定容量/(A·h) | QBr | 20 | ||||||||
SOC初始值/% | A相 | 上桥臂 | SOCpa | 45 | ||||||
下桥臂 | SOCna | 47 | ||||||||
B相 | 上桥臂 | SOCpb | 51 | |||||||
下桥臂 | SOCnb | 49 | ||||||||
C相 | 上桥臂 | SOCpc | 53 | |||||||
下桥臂 | SOCnc | 55 | ||||||||
直流侧 超级电容 | 串联电容总值/F | CSC | 1 | |||||||
工作电压上边界/kV | USCmax | 11 | ||||||||
工作电压下边界/kV | USCmin | 1 | ||||||||
HSC 功率环 | 虚拟惯量系数(p.u.) | J | 2.5 | |||||||
阻尼系数(p.u.) | Dp | 100 | ||||||||
PLL分量比例系数(p.u.) | Kp | 10 | ||||||||
电压内环 | 比例系数(p.u.) | Kpv | 0.5 | |||||||
积分系数(p.u.) | Kiv | 500 | ||||||||
电流内环 | 比例系数(p.u.) | Kpi | 1 | |||||||
积分系数(p.u.) | Kii | 200 | ||||||||
SC功率 | 高频分量补偿系数(p.u.) | KH | 5 | |||||||
低频分量补偿系数(p.u.) | KL0 | 0.5 | ||||||||
直流电流环 | 比例系数(p.u.) | KpDC | 0.5 | |||||||
积分系数(p.u.) | KiDC | 100 | ||||||||
SOC均衡 | 相间SOC均衡系数(p.u.) | Kph | 50 | |||||||
上下桥臂SOC均衡系数(p.u.) | Karm | 40 | ||||||||
环流直流分量限幅(p.u.) | IDCcir_lim | 3 | ||||||||
环流交流分量限幅(p.u.) | IACcir_lim | 2 | ||||||||
排序优先级SOC死区/% | DB | 0.1 |
Table 1 HSC controlled MMC-HESS parameters
结构 | 参数 | 标识 | 设置 | |||||||
网侧 | 电压等级/kV | Vbase | 10 | |||||||
额定频率/Hz | f0 | 50 | ||||||||
额定容量/(MV·A) | Sbase | 10 | ||||||||
线路电感(p.u.) | Ls | 0.2 | ||||||||
线路电阻(p.u.) | Rs | 0.002 | ||||||||
LC滤波器 | 串联电感(p.u.) | Lf | 0.2 | |||||||
电感寄生电阻(p.u.) | Rf | 0.02 | ||||||||
并联电容(p.u.) | Cf | 0.02 | ||||||||
电容寄生电阻(p.u.) | RCf | 0.1 | ||||||||
桥臂结构 | 单个桥臂子模块级联数 | N | 8 | |||||||
桥臂电感/mH | L0 | 12 | ||||||||
桥臂电阻/Ω | R0 | 0.1 | ||||||||
子模块内部并联电容/mF | C0 | 8.4 | ||||||||
蓄电池 | 单个额定电压/kV | VBr | 2.5 | |||||||
单个额定容量/(A·h) | QBr | 20 | ||||||||
SOC初始值/% | A相 | 上桥臂 | SOCpa | 45 | ||||||
下桥臂 | SOCna | 47 | ||||||||
B相 | 上桥臂 | SOCpb | 51 | |||||||
下桥臂 | SOCnb | 49 | ||||||||
C相 | 上桥臂 | SOCpc | 53 | |||||||
下桥臂 | SOCnc | 55 | ||||||||
直流侧 超级电容 | 串联电容总值/F | CSC | 1 | |||||||
工作电压上边界/kV | USCmax | 11 | ||||||||
工作电压下边界/kV | USCmin | 1 | ||||||||
HSC 功率环 | 虚拟惯量系数(p.u.) | J | 2.5 | |||||||
阻尼系数(p.u.) | Dp | 100 | ||||||||
PLL分量比例系数(p.u.) | Kp | 10 | ||||||||
电压内环 | 比例系数(p.u.) | Kpv | 0.5 | |||||||
积分系数(p.u.) | Kiv | 500 | ||||||||
电流内环 | 比例系数(p.u.) | Kpi | 1 | |||||||
积分系数(p.u.) | Kii | 200 | ||||||||
SC功率 | 高频分量补偿系数(p.u.) | KH | 5 | |||||||
低频分量补偿系数(p.u.) | KL0 | 0.5 | ||||||||
直流电流环 | 比例系数(p.u.) | KpDC | 0.5 | |||||||
积分系数(p.u.) | KiDC | 100 | ||||||||
SOC均衡 | 相间SOC均衡系数(p.u.) | Kph | 50 | |||||||
上下桥臂SOC均衡系数(p.u.) | Karm | 40 | ||||||||
环流直流分量限幅(p.u.) | IDCcir_lim | 3 | ||||||||
环流交流分量限幅(p.u.) | IACcir_lim | 2 | ||||||||
排序优先级SOC死区/% | DB | 0.1 |
1 | 谢小荣, 贺静波, 毛航银, 等. “双高” 电力系统稳定性的新问题及分类探讨[J]. 中国电机工程学报, 2021, 41 (2): 461- 475. |
XIE Xiaorong, HE Jingbo, MAO Hangyin, et al. New issues and classification of power system stability with high shares of renewables and power electronics[J]. Proceedings of the CSEE, 2021, 41 (2): 461- 475. | |
2 | 钱国明, 孟杰, 朱海东, 等. 基于调频服务的新型光-储电站容量规划及运行策略[J]. 中国电力, 2023, 56 (6): 132- 138, 147. |
QIAN Guoming, MENG Jie, ZHU Haidong, et al. Capacity planning and operation strategy of new PV-storage power station based on frequency modulation service[J]. Electric Power, 2023, 56 (6): 132- 138, 147. | |
3 | 张嘉诚, 夏向阳, 邓子豪, 等. 储能电站安全参与电网一次调频的优化控制策略[J]. 中国电力, 2022, 55 (2): 19- 27. |
ZHANG Jiacheng, XIA Xiangyang, DENG Zihao, et al. Optimal control strategy for energy storage power station in primary frequency regulation of power grid[J]. Electric Power, 2022, 55 (2): 19- 27. | |
4 | 赵昕昕, 夏向阳, 曾小勇, 等. 基于混合粒子群优化的混合储能直流电源系统[J]. 中国电力, 2019, 52 (5): 104- 112. |
ZHAO Xinxin, XIA Xiangyang, ZENG Xiaoyong, et al. Hybrid energy storage DC power supply system based on PSO-NM[J]. Electric Power, 2019, 52 (5): 104- 112. | |
5 | 柴秀慧, 张纯江, 柴建国, 等. 蓄电池-超级电容混合储能系统性能优化[J]. 电工电能新技术, 2019, 38 (9): 33- 41. |
CHAI Xiuhui, ZHANG Chunjiang, CHAI Jianguo, et al. Performance optimization of battery-ultracapacitor hybrid energy storage system[J]. Advanced Technology of Electrical Engineering and Energy, 2019, 38 (9): 33- 41. | |
6 | 张国驹, 唐西胜, 齐智平. 超级电容器与蓄电池混合储能系统在微网中的应用[J]. 电力系统自动化, 2010, 34 (12): 85- 89. |
ZHANG Guoju, TANG Xisheng, QI Zhiping. Application of hybrid energy storage system of super-capacitors and batteries in a microgrid[J]. Automation of Electric Power Systems, 2010, 34 (12): 85- 89. | |
7 | 李楠, 张磊, 马士聪, 等. 基于模块化多电平换流器的电池储能系统控制策略[J]. 电力系统自动化, 2017, 41 (9): 144- 150. |
LI Nan, ZHANG Lei, MA Shicong, et al. Control strategy for battery energy storage system based on modular multilevel converters[J]. Automation of Electric Power Systems, 2017, 41 (9): 144- 150. | |
8 | QIU S P, SHI B. An enhanced battery interface of MMC-BESS[C]//2019 IEEE 10th International Symposium on Power Electronics for Distributed Generation Systems (PEDG). Xi'an, China. IEEE, 2019: 434–439. |
9 |
李善颖, 吴涛, 任彬, 等. 基于模块化多电平变换器的储能系统综述[J]. 电力系统保护与控制, 2015, 43 (16): 139- 146.
DOI |
LI Shanying, WU Tao, REN Bin, et al. Review of energy storage system based on modular multilevel converter[J]. Power System Protection and Control, 2015, 43 (16): 139- 146.
DOI |
|
10 | 郑飞洋. 基于模块化多电平的电池储能系统能量管理控制研究[D]. 秦皇岛: 燕山大学, 2021. |
ZHENG Feiyang. Research on energy management control of battery energy storage system based on modular multilevel converter[D]. Qinhuangdao: Yanshan University, 2021. | |
11 | GUO F, YE Y Z, SHARMA R. A modular multilevel converter based battery-ultracapacitor hybrid energy storage system for photovoltaic applications[C]//2015 Clemson University Power Systems Conference (PSC). Clemson, SC, USA. IEEE, 2015: 1–6. |
12 | LEI Z, TANG Y, YANG S F, et al. A modular multilevel converter-based grid-tied battery-supercapacitor hybrid energy storage system with decoupled power control[C]//2016 IEEE 8th International Power Electronics and Motion Control Conference (IPEMC-ECCE Asia). Hefei, China. IEEE, 2016: 2964–2971. |
13 | 孙佳航, 王小华, 黄景光, 等. 基于MPC-VSG的孤岛微电网频率和电压动态稳定控制策略[J]. 中国电力, 2023, 56 (6): 51- 60, 81. |
SUN Jiahang, WANG Xiaohua, HUANG Jingguang, et al. MPC-VSG based control strategy for dynamic stability of frequency and voltage in islanded microgrid[J]. Electric Power, 2023, 56 (6): 51- 60, 81. | |
14 | 盛师贤, 周鑫, 王德林, 等. 虚拟同步风电场协同光伏电站附加阻尼控制方法[J]. 中国电力, 2022, 55 (3): 177- 186. |
SHENG Shixian, ZHOU Xin, WANG Delin, et al. Additional damping cooperative control method of virtual synchronous wind farm and photovoltaic power stations[J]. Electric Power, 2022, 55 (3): 177- 186. | |
15 | 李文启, 徐箭, 刘韶林, 等. 基于模块化多电平换流器的虚拟同步机设计[J]. 电气应用, 2020, 39 (8): 71- 77. |
LI Wenqi, XU Jian, LIU Shaolin, et al. Design of virtual synchronous generator based on modular multilevel converter[J]. Electrotechnical Application, 2020, 39 (8): 71- 77. | |
16 | 卢绍群. 基于虚拟同步机的MMC互联变换器控制策略研究[D]. 湘潭: 湘潭大学, 2020. |
LU Shaoqun. Research on control strategy of MMC interconnected converter based on virtual synchronous machine[D]. Xiangtan: Xiangtan University, 2020. | |
17 | JI K, PANG H, LIU S, et al. Impedance analysis considering unstable subsystem poles for MMC-HVDC-based wind farm integration system[J]. CSEE Journal of Power and Energy Systems, 2022, 8 (2): 634- 639. |
18 | 杨舒婷, 陈新, 黄通, 等. 考虑MMC环流控制的海上风电经柔直送出系统阻抗塑造方法[J]. 中国电力, 2023, 56 (4): 38- 45. |
YANG Shuting, CHEN Xin, HUANG Tong, et al. Impedance modeling method of offshore wind farm integration through MMC-HVDC with MMC circulation control[J]. Electric Power, 2023, 56 (4): 38- 45. | |
19 | 董婉婉. MMC半桥串联结构微电网系统的并离网切换控制研究[D]. 兰州: 兰州理工大学, 2022. |
DONG Wanwan. Research on grid-connected and islanded switching control of MMC half-bridge series structure microgrid system[D]. Lanzhou: Lanzhou University of Technology, 2022. | |
20 | 蔡婉琪. 基于模块化多电平换流器的混合储能系统研究[D]. 杭州: 浙江大学, 2021. |
CAI Wanqi. Study on hybrid energy storage system based on modular multilevel converter[D]. Hangzhou: Zhejiang University, 2021. | |
21 |
HU P F, TEODORESCU R, GUERRERO J M. Negative-sequence second-order circulating current injection for hybrid MMC under over-modulation conditions[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2020, 8 (3): 2508- 2519.
DOI |
22 | LIU D Q, WANG G Z, OU Z J, et al. A control strategy of MMC battery energy storage system based on arm current control[C]//2018 International Power Electronics Conference (IPEC-Niigata 2018 -ECCE Asia). Niigata, Japan. IEEE, 2018: 1376–1380. |
23 | 郭龙, 梁晖, 张维戈. 基于模块化多电平变流器的电池储能系统荷电状态均衡控制策略[J]. 电网技术, 2017, 41 (8): 2688- 2697. |
GUO Long, LIANG Hui, ZHANG Weige. State-of-charge balancing control strategy for battery energy storage system based on modular multi-level converter[J]. Power System Technology, 2017, 41 (8): 2688- 2697. | |
24 |
HU P F, TEODORESCU R, WANG S D, et al. A currentless sorting and selection-based capacitor-voltage-balancing method for modular multilevel converters[J]. IEEE Transactions on Power Electronics, 2019, 34 (2): 1022- 1025.
DOI |
25 | 陈亚爱, 林演康, 王赛, 等. 基于滤波分配法的混合储能优化控制策略[J]. 电工技术学报, 2020, 35 (19): 4009- 4018. |
CHEN Yaai, LIN Yankang, WANG Sai, et al. Optimal control strategy of hybrid energy storage based on filter allocation method[J]. Transactions of China Electrotechnical Society, 2020, 35 (19): 4009- 4018. | |
26 | 姜卫同, 胡鹏飞, 尹瑞, 等. 基于虚拟同步机的变流器暂态稳定分析及混合同步控制策略[J]. 电力系统自动化, 2021, 45 (22): 124- 133. |
JIANG Weitong, HU Pengfei, YIN Rui, et al. Transient stability analysis and hybrid synchronization control strategy of converter based on virtual synchronous generator[J]. Automation of Electric Power Systems, 2021, 45 (22): 124- 133. |
[1] | Pai LI, Hui LU, Chi LI, Hongbo DU. Bi-level Capacity Optimization for Battery/Thermal Energy Storage System in Multi-energy Complementary Power Generation System [J]. Electric Power, 2025, 58(3): 55-64. |
[2] | Tian XIA, Daifei LIU, Jiahui YUE, Laien CHEN, Yiliang Li. Estimation of Model Parameters of Lithium Batteries Based on Kalman Filtering Optimized by Dung Beetle Algorithm [J]. Electric Power, 2025, 58(1): 196-204. |
[3] | Yuan GUO, Xiangyang XIA, Jiahui YUE, Hui LI, Jinbo WU. Battery Cluster Inconsistency Detection Method and Intelligent O&M Scheme Based on Vector Error Correction Model [J]. Electric Power, 2024, 57(6): 9-17, 44. |
[4] | Muyu ZHU, Hongzhong MA, Pengyu GUO, Wenjing XUAN. State of Charge Estimation of Energy Storage Battery Pack under Typical Peak/Frequency Modulation Conditions [J]. Electric Power, 2024, 57(6): 18-26. |
[5] | Huimin XIONG, Yuezhong PENG, Lixue HE, Zhangmao HU, Wei WANG, Hong TIAN. Thermal Performance Analysis of Novel All-Climate Lithium-Ion Battery Thermal Management System Coupled with Heat Pipes and Phase Change Materials [J]. Electric Power, 2024, 57(6): 27-36. |
[6] | Hao PENG, Zhengjing LUO, Xiangyang XIA, Gang ZENG, Yujian OU, Guiquan CHEN, Jijun WANG, Lihong LIU. Health State Equalization Control Strategy for Multi-battery Clusters in Energy Storage Systems [J]. Electric Power, 2024, 57(6): 45-52. |
[7] | Lei ZHANG, Weidong XIAO, Chunbing JIANG, Yao LIU, Shaojie LI, Ji ZHANG. Capacity Allocation Method of Key Equipment in PV System Applied in Office Buildings [J]. Electric Power, 2024, 57(3): 152-159, 169. |
[8] | Fuguo ZHANG, Zepeng LI, Peng WU, Xue WANG, Xiaoen LI. Performance Analysis of Combined Cooling, Heating and Power System Integrated with Energy Storage Battery at Comprehensive Conditions [J]. Electric Power, 2024, 57(2): 161-170. |
[9] | Xiangyang XIA, Xinxin TAN, Zhouping SHAN, Hui LI, Zhiqiang XU, Jinbo WU, Jiahui YUE, Guiquan CHEN. Key Technology and Development Prospect of Ontology Safety for Lithium-Ion Battery Storage Power Stations [J]. Electric Power, 2024, 57(11): 1-17. |
[10] | Zhiyuan SUN, Boya PENG, Yan SUN. Optimal Dispatch Strategy of Power and Electricity Balance Based on Multi-Energy Complementation [J]. Electric Power, 2024, 57(1): 115-122. |
[11] | LIU Daobing, BAO Miaosheng, Li Shichun, Guo Hancong, Guo Yingying, Qi Yue. Passive Sliding Mode Control Strategy for PCHD Model of MMC in Unbalanced Power Grid [J]. Electric Power, 2023, 56(8): 109-116. |
[12] | LU Zijing, LI Zishou, GUO Xiangguo, YANG Bo. Optimal Configuration of Electricity-Hydrogen Hybrid Energy Storage System Based on Multi-objective Artificial Hummingbird Algorithm [J]. Electric Power, 2023, 56(7): 33-42. |
[13] | CHEN Cheng, XUE Hua, HU Zenghui, WANG Yufei. Passivity-Based PI Control Method of MMC with Asymmetric Bridge Arms [J]. Electric Power, 2023, 56(7): 107-116,124. |
[14] | YUE Jiahui, XIA Xiangyang, JIANG Daiyu, ZHOU Guandong, XU Zhiqiang, ZHANG Yuan, LV Chonggeng. Remaining Useful Life Prediction and State of Health Estimation of Lithium-Ion Batteries Based on Voltage Data Segment Hybrid Model [J]. Electric Power, 2023, 56(7): 163-174. |
[15] | ZHANG Yuan, XIA Xiangyang, YUE Jiahui, LIU Daifei, WANG Mingqi. Online Monitoring Method of Battery Stack Inconsistency Based on Discharge Quantity of Battery Clusters [J]. Electric Power, 2023, 56(7): 207-215,227. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||