Electric Power ›› 2024, Vol. 57 ›› Issue (6): 27-36.DOI: 10.11930/j.issn.1004-9649.202401029
• Key Safety Technology of Lithium-Ion Battery Body for Energy Storage • Previous Articles Next Articles
Huimin XIONG(), Yuezhong PENG, Lixue HE, Zhangmao HU(
), Wei WANG(
), Hong TIAN
Received:
2024-01-07
Accepted:
2024-04-06
Online:
2024-06-23
Published:
2024-06-28
Supported by:
Huimin XIONG, Yuezhong PENG, Lixue HE, Zhangmao HU, Wei WANG, Hong TIAN. Thermal Performance Analysis of Novel All-Climate Lithium-Ion Battery Thermal Management System Coupled with Heat Pipes and Phase Change Materials[J]. Electric Power, 2024, 57(6): 27-36.
材料 | 密度/(kg·m–3) | 比热/(J·(g·K)–1) | 导热系数/(W·(m·K)–1) | 动力粘度/(Pa·s) | 热膨胀系数/K–1 | 潜热/(J·kg–1) | 熔化温度/℃ | |||||||
相变材料[ | 814 | 1934.00 | 0.35 | 0.003875 | 0.00091 | 245000 | 27.2~29.2 | |||||||
电池[ | 2751 | 1070.00 | 1.15(径向)23.34(轴向) | |||||||||||
热管 | 400[ | 4000.00[ | 20000 | |||||||||||
保温材料[ | 50 | 1.46 | 0.025 |
Table 1 Thermophysical properties of PCM, batteries, heat pipes, and insulating materials
材料 | 密度/(kg·m–3) | 比热/(J·(g·K)–1) | 导热系数/(W·(m·K)–1) | 动力粘度/(Pa·s) | 热膨胀系数/K–1 | 潜热/(J·kg–1) | 熔化温度/℃ | |||||||
相变材料[ | 814 | 1934.00 | 0.35 | 0.003875 | 0.00091 | 245000 | 27.2~29.2 | |||||||
电池[ | 2751 | 1070.00 | 1.15(径向)23.34(轴向) | |||||||||||
热管 | 400[ | 4000.00[ | 20000 | |||||||||||
保温材料[ | 50 | 1.46 | 0.025 |
Fig.5 Comparison of maximum battery temperature module, liquid fraction of PCM, and duration of heat preservation under different insulation material thickness
放电倍率 | 电池组最高温度/℃ | 液相率 | 保温时长/s | |||
0.5C | 29.76 | 0.99 | 25060 | |||
1.0C | 31.60 | 1.00 | 27830 | |||
2.0C | 37.52 | 0.96 | 26880 |
Table 2 Maximum battery temperature module, liquid fraction of PCM and heat preservation duration under different discharge rates
放电倍率 | 电池组最高温度/℃ | 液相率 | 保温时长/s | |||
0.5C | 29.76 | 0.99 | 25060 | |||
1.0C | 31.60 | 1.00 | 27830 | |||
2.0C | 37.52 | 0.96 | 26880 |
1 |
HE L G, JING H D, ZHANG Y, et al. Review of thermal management system for battery electric vehicle[J]. Journal of Energy Storage, 2023, 59, 106443.
DOI |
2 | 岳家辉, 夏向阳, 蒋戴宇, 等. 基于电压数据片段混合模型的锂离子电池剩余寿命预测与健康状态估计[J]. 中国电力, 2023, 56 (7): 163- 174. |
YUE Jiahui, XIA Xiangyagn, JIANG Daiyu, et al. Remaining useful life prediction and state of health estimation of lithium-ion batteries based on voltage data segment hybrid model[J]. Electric Power, 2023, 56 (7): 163- 174. | |
3 | 黎冲, 王成辉, 王高, 等. 基于数据驱动的锂离子电池健康状态估计技术[J]. 中国电力, 2022, 55 (8): 73- 86, 95. |
LI Chong, WANG Chenghui, WANG Gao, et al. Technology of lithium-ion battery state-of-health assessment based on data-driven[J]. Electric Power, 2022, 55 (8): 73- 86, 95. | |
4 |
NA X Y, KANG H F, WANG T, et al. Reverse layered air flow for Li-ion battery thermal management[J]. Applied Thermal Engineering, 2018, 143, 257- 262.
DOI |
5 |
ZHANG F R, LIU P W, HE Y X, et al. Cooling performance optimization of air cooling lithium-ion battery thermal management system based on multiple secondary outlets and baffle[J]. Journal of Energy Storage, 2022, 52, 104678.
DOI |
6 | JITHIN K V, RAJESH P K. Numerical analysis of single-phase liquid immersion cooling for lithium-ion battery thermal management using different dielectric fluids[J]. International Journal of Heat and Mass Transfer, 2022, 188. |
7 |
YOUSSEF R, HOSEN M S, HE J C, et al. Novel design optimization for passive cooling PCM assisted battery thermal management system in electric vehicles[J]. Case Studies in Thermal Engineering, 2022, 32, 101896.
DOI |
8 |
ZHAO R, GU J J, LIU J. Performance assessment of a passive core cooling design for cylindrical lithium-ion batteries[J]. International Journal of Energy Research, 2018, 42 (8): 2728- 2740.
DOI |
9 |
LUO J, ZOU D Q, WANG Y S, et al. Battery thermal management systems (BTMs) based on phase change material (PCM): a comprehensive review[J]. Chemical Engineering Journal, 2022, 430, 132741.
DOI |
10 |
LIU H Q, JIN C W, LI H, et al. A numerical study of PCM battery thermal management performance enhancement with fin structures[J]. Energy Reports, 2023, 9, 1793- 1802.
DOI |
11 |
贺春敏, 杨翼, 蔡天鏖, 等. 基于Mxene/石蜡CPCM的锂电池热管理系统[J]. 电源技术, 2023, 47 (5): 627- 631.
DOI |
HE Chunmin, YANG Yi, CAI Tian’ao, et al. Thermal management system of lithium ion battery based on Mxene/paraffin composite phase change material[J]. Chinese Journal of Power Sources, 2023, 47 (5): 627- 631.
DOI |
|
12 |
WANG Y W, PENG P, CAO W J, et al. Experimental study on a novel compact cooling system for cylindrical lithium-ion battery module[J]. Applied Thermal Engineering, 2020, 180, 115772.
DOI |
13 |
XIN Q Q, YANG T Q, ZHANG H Y, et al. Simulation and optimization of lithium-ion battery thermal management system integrating composite phase change material, flat heat pipe and liquid cooling[J]. Batteries, 2023, 9 (6): 334.
DOI |
14 |
SASMITO A P, SHAMIM T, MUJUMDAR A S. Passive thermal management for PEM fuel cell stack under cold weather condition using phase change materials (PCM)[J]. Applied Thermal Engineering, 2013, 58 (1-2): 615- 625.
DOI |
15 |
FANG X Y, NONG X L, LIAO Z R, et al. A novel preheating method for the Li-ion battery using supercooled phase change materials[J]. Science China Technological Sciences, 2023, 66 (1): 193- 203.
DOI |
16 |
WANG Z C, DU C Q, QI R, et al. Experimental study on thermal management of lithium-ion battery with graphite powder based composite phase change materials covering the whole climatic range[J]. Applied Thermal Engineering, 2022, 216, 119072.
DOI |
17 |
CHENG G, WANG Z Z, WANG X Z, et al. All-climate thermal management structure for batteries based on expanded graphite/polymer composite phase change material with a high thermal and electrical conductivity[J]. Applied Energy, 2022, 322, 119509.
DOI |
18 |
YE Y, SAW L H, SHI Y, et al. Numerical analyses on optimizing a heat pipe thermal management system for lithium-ion batteries during fast charging[J]. Applied Thermal Engineering, 2015, 86, 281- 291.
DOI |
19 |
KANT K, SHUKLA A, SHARMA A, et al. Melting and solidification behaviour of phase change materials with cyclic heating and cooling[J]. Journal of Energy Storage, 2018, 15, 274- 282.
DOI |
20 |
WANG H M, WANG Y F, HU F, et al. Heat generation measurement and thermal management with phase change material based on heat flux for high specific energy power battery[J]. Applied Thermal Engineering, 2021, 194, 117053.
DOI |
21 |
JIAQIANG E, YI F, LI W J, et al. Effect analysis on heat dissipation performance enhancement of a lithium-ion-battery pack with heat pipe for central and southern regions in China[J]. Energy, 2021, 226, 120336.
DOI |
22 | 陈占国. 低温环境锂离子动力电池相变换热研究[D]. 长沙: 湖南大学, 2021. |
CHEN Zhanguo. Study on phase-change heat transfer of low temperature lithium ion power battery[D]. Changsha: Hunan University, 2021. | |
23 |
AKBARZADEH M, JAGUEMONT J, KALOGIANNIS T, et al. A novel liquid cooling plate concept for thermal management of lithium-ion batteries in electric vehicles[J]. Energy Conversion and Management, 2021, 231, 113862.
DOI |
24 |
SEDDEGH S, WANG X L, HENDERSON A D. Numerical investigation of heat transfer mechanism in a vertical shell and tube latent heat energy storage system[J]. Applied Thermal Engineering, 2015, 87, 698- 706.
DOI |
25 |
付程阔, 元佳宇, 刘泽宇, 等. 21700锂离子电池风冷结构设计与散热效果研究[J]. 内燃机与配件, 2022, (9): 1- 3.
DOI |
FU Chengkuo, YUAN Jiayu, LIU Zeyu, et al. 21700 Li-ion battery air-cooled structure design and heat dissipation effect research[J]. Internal Combustion Engine & Parts, 2022, (9): 1- 3.
DOI |
|
26 |
DING Y Z, WEI M X, LIU R. Channel parameters for the temperature distribution of a battery thermal management system with liquid cooling[J]. Applied Thermal Engineering, 2021, 186, 116494.
DOI |
27 |
LI Y H, CHEN Z L, FENG Y, et al. A novel petal-type battery thermal management system with dual phase change materials[J]. International Journal of Heat and Mass Transfer, 2023, 207, 123989.
DOI |
[1] | Zhanbo WANG, Sirui ZHANG, Mingyu JIANG, Yue XIA, Shengqiang GAO, Shuaiyu BU. Application of Electromagnetic and Electromechanical Transient Simulation to Dynamic Modeling of Multi-energy System [J]. Electric Power, 2024, 57(11): 48-61. |
[2] | Xiangyang XIA, Xinxin TAN, Zhouping SHAN, Hui LI, Zhiqiang XU, Jinbo WU, Jiahui YUE, Guiquan CHEN. Key Technology and Development Prospect of Ontology Safety for Lithium-Ion Battery Storage Power Stations [J]. Electric Power, 2024, 57(11): 1-17. |
[3] | ZHANG Yuan, XIA Xiangyang, YUE Jiahui, LIU Daifei, WANG Mingqi. Online Monitoring Method of Battery Stack Inconsistency Based on Discharge Quantity of Battery Clusters [J]. Electric Power, 2023, 56(7): 207-215,227. |
[4] | YUE Jiahui, XIA Xiangyang, JIANG Daiyu, ZHOU Guandong, XU Zhiqiang, ZHANG Yuan, LV Chonggeng. Remaining Useful Life Prediction and State of Health Estimation of Lithium-Ion Batteries Based on Voltage Data Segment Hybrid Model [J]. Electric Power, 2023, 56(7): 163-174. |
[5] | LIU Wenjun, OU Mingyong, XIA Xiangyang, LI Xianghua, YUE Jiahui. Research on Online Monitoring Method of Battery Cluster Inconsistency Based on Ohmic Internal Resistance Voltage Drop [J]. Electric Power, 2022, 55(8): 87-95. |
[6] | LI Chong, WANG Chenghui, WANG Gao, LU Zonghu, MA Chengzhi. Technology of Lithium-Ion Battery State-of-Health Assessment Based on Data-Driven [J]. Electric Power, 2022, 55(8): 73-86,95. |
[7] | SU Wei, ZHONG Guo-bin, WEI Zeng-fu. Application of Cathode Materials for Lithium-Ion Batteries in Electric Energy Storage [J]. Electric Power, 2013, 46(8): 70-73. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||