Electric Power ›› 2024, Vol. 57 ›› Issue (2): 161-170.DOI: 10.11930/j.issn.1004-9649.202301046
• New Energy • Previous Articles Next Articles
Fuguo ZHANG(), Zepeng LI, Peng WU, Xue WANG, Xiaoen LI
Received:
2023-01-28
Accepted:
2023-04-28
Online:
2024-02-23
Published:
2024-02-28
Supported by:
Fuguo ZHANG, Zepeng LI, Peng WU, Xue WANG, Xiaoen LI. Performance Analysis of Combined Cooling, Heating and Power System Integrated with Energy Storage Battery at Comprehensive Conditions[J]. Electric Power, 2024, 57(2): 161-170.
数据分类 | 循环净 功率/MW | 简单循环发电效率/ % | 热耗率/ (kJ·(kW·h)–1) | 燃料量/ (kg·s–1) | 燃料低位发热量/ (MJ·m–3) | 压气机进口空气量/ ( kg·s–1) | 压气机排气温度/℃ | 压气机压比 | 燃气初温/℃ | 燃气透平等熵效率 | 燃气轮机排气流量/ (kg·s–1) | 燃气轮 机排气 温度/℃ | ||||||||||||
厂家提供数据 | 1.210 | 24.33 | 14795.0 | 0.1087 | 35 | 6.43 | — | 6.70 | 904.00 | — | 6.539 | 505.00 | ||||||||||||
建模结果 | 1.215 | 24.43 | 14736.0 | 0.1085 | 35 | 6.44 | 271.0 | 6.72 | 912.30 | 0.85 | 6.546 | 508.30 | ||||||||||||
相对误差/% | 0.410 | 0.41 | –0.4 | –0.1800 | 0 | 0.16 | — | 0.30 | 0.92 | — | 0.110 | 0.65 |
Table 1 Model calculation results and comparison
数据分类 | 循环净 功率/MW | 简单循环发电效率/ % | 热耗率/ (kJ·(kW·h)–1) | 燃料量/ (kg·s–1) | 燃料低位发热量/ (MJ·m–3) | 压气机进口空气量/ ( kg·s–1) | 压气机排气温度/℃ | 压气机压比 | 燃气初温/℃ | 燃气透平等熵效率 | 燃气轮机排气流量/ (kg·s–1) | 燃气轮 机排气 温度/℃ | ||||||||||||
厂家提供数据 | 1.210 | 24.33 | 14795.0 | 0.1087 | 35 | 6.43 | — | 6.70 | 904.00 | — | 6.539 | 505.00 | ||||||||||||
建模结果 | 1.215 | 24.43 | 14736.0 | 0.1085 | 35 | 6.44 | 271.0 | 6.72 | 912.30 | 0.85 | 6.546 | 508.30 | ||||||||||||
相对误差/% | 0.410 | 0.41 | –0.4 | –0.1800 | 0 | 0.16 | — | 0.30 | 0.92 | — | 0.110 | 0.65 |
项目 | 制冷工况 | 供热工况 | ||
环境温度/℃ | 30 | 5 | ||
压气机进口空气量/( kg·s–1) | 5.944 | 6.628 | ||
压气机出口压力/MPa | 0.629 | 0.702 | ||
燃料量/( kg·s–1) | 0.0615 | 0.0727 | ||
燃气轮机排气流量/( kg·s–1) | 6.006 | 6.700 | ||
燃气轮机排气温度/ ℃ | 541.3 | 514.8 | ||
回热器出口烟气温度/ ℃ | 316.8 | 287.5 | ||
循环净功率/kW | 975 | 1325.9 | ||
简单循环发电效率/% | 34.61 | 39.80 | ||
蒸发器负荷/kW | 965.4 | 732.1 | ||
冷凝器负荷/kW | 1033.6 | 801.9 | ||
吸收器负荷/kW | 1171.0 | 976.0 | ||
发生器负荷/kW | 1239.1 | 1045.7 | ||
制冷/供热系数 | 0.779 | 1.700 | ||
能源利用系数 | 0.689 | 0.932 |
Table 2 Chilling and heating design conditions
项目 | 制冷工况 | 供热工况 | ||
环境温度/℃ | 30 | 5 | ||
压气机进口空气量/( kg·s–1) | 5.944 | 6.628 | ||
压气机出口压力/MPa | 0.629 | 0.702 | ||
燃料量/( kg·s–1) | 0.0615 | 0.0727 | ||
燃气轮机排气流量/( kg·s–1) | 6.006 | 6.700 | ||
燃气轮机排气温度/ ℃ | 541.3 | 514.8 | ||
回热器出口烟气温度/ ℃ | 316.8 | 287.5 | ||
循环净功率/kW | 975 | 1325.9 | ||
简单循环发电效率/% | 34.61 | 39.80 | ||
蒸发器负荷/kW | 965.4 | 732.1 | ||
冷凝器负荷/kW | 1033.6 | 801.9 | ||
吸收器负荷/kW | 1171.0 | 976.0 | ||
发生器负荷/kW | 1239.1 | 1045.7 | ||
制冷/供热系数 | 0.779 | 1.700 | ||
能源利用系数 | 0.689 | 0.932 |
1 | 郭宴秀, 苏建军, 刘洋, 等. 考虑电热交互和共享储能的多综合能源系统运行优化[J]. 中国电力, 2023, 56 (4): 138- 145. |
GUO Yanxiu, SU Jianjun, LIU Yang, et al. Optimal operation of multiple integrated energy systems considering power and heat interaction and shared energy storage system[J]. Electric Power, 2023, 56 (4): 138- 145. | |
2 | 杨晓辉, 张柳芳, 吴龙杰, 等. 含考虑IDR的冷热电联供微网的主动配电网经济优化调度[J]. 电力系统保护与控制, 2022, 50 (3): 19- 28. |
YANG Xiaohui, ZHANG Liufang, WU Longjie, et al. Economic optimal dispatch of an active distribution network with combined cooling, heating and power microgrids considering integrated demand response[J]. Power System Protection and Control, 2022, 50 (3): 19- 28. | |
3 | 梁涛, 尹晓东, 刘亚祥. 面向投资收益的综合能源系统鲁棒优化配置规划[J]. 中国电力, 2023, 56 (4): 156- 166. |
LIANG Tao, YIN Xiaodong, LIU Yaoxiang. Robust optimal configuration planning of integrated energy system for return on investment[J]. Electric Power, 2023, 56 (4): 156- 166. | |
4 | 周家秀, 王露宁, 刘雪洁, 等. 不同运行模式下燃气轮机冷热电三联供系统仿真研究[J]. 青岛理工大学学报, 2021, 42 (1): 58- 65. |
ZHOU Jiaxiu, WANG Luning, LIU Xuejie, et al. Simulation research on the CCHP system using gas turbine under different operation modes[J]. Journal of Qingdao University of Technology, 2021, 42 (1): 58- 65. | |
5 | 杨晚生, 郭开华. 微型燃气轮机冷热电联供系统的热经济性分析[J]. 暖通空调, 2012, 42 (1): 80- 83. |
YANG Wansheng, GUO Kaihua. Thermal economic analysis on CCHP system based on micro-turbines[J]. Heating Ventilating & Air Conditioning, 2012, 42 (1): 80- 83. | |
6 |
ASGARI N, KHOSHBAKHTI SARAY R, MIRMASOUMI S. Energy and exergy analyses of a novel seasonal CCHP system driven by a gas turbine integrated with a biomass gasification unit and a LiBr-water absorption chiller[J]. Energy Conversion and Management, 2020, 220, 113096.
DOI |
7 | 任育杰, 胡健, 张晨阳, 等. 耦合太阳能的绝热压缩空气燃气三联产系统性能分析[J]. 中国测试, 2023, 49 (6): 137- 142. |
REN Yujie, HU Jian, ZHANG Chenyang, et al. Performances analysis of adiabatic compressed air gas CCHP system coupled with solar energy[J]. China Measurement & Test, 2023, 49 (6): 137- 142. | |
8 |
GEIDL M, KOEPPEL G, FAVRE-PERROD P, et al. Energy hubs for the future[J]. IEEE Power and Energy Magazine, 2007, 5 (1): 24- 30.
DOI |
9 | 余晓丹, 徐宪东, 陈硕翼, 等. 综合能源系统与能源互联网简述[J]. 电工技术学报, 2016, 31 (1): 1- 13. |
YU Xiaodan, XU Xiandong, CHEN Shuoyi, et al. A brief review to integrated energy system and energy Internet[J]. Transactions of China Electrotechnical Society, 2016, 31 (1): 1- 13. | |
10 | 黄武靖, 张宁, 董瑞彪, 等. 多能源网络与能量枢纽联合规划方法[J]. 中国电机工程学报, 2018, 38 (18): 5425- 5437. |
HUANG Wujing, ZHANG Ning, DONG Ruibiao, et al. Coordinated planning of multiple energy networks and energy hubs[J]. Proceedings of the CSEE, 2018, 38 (18): 5425- 5437. | |
11 | 吴盛军, 李群, 刘建坤, 等. 基于储能电站服务的冷热电多微网系统双层优化配置[J]. 电网技术, 2021, 45 (10): 3822- 3832. |
WU Shengjun, LI Qun, LIU Jiankun, et al. Bi-level optimal configuration for combined cooling heating and power multi-microgrids based on energy storage station service[J]. Power System Technology, 2021, 45 (10): 3822- 3832. | |
12 | 贠保记, 白森珂, 张国. 基于混沌自适应粒子群算法的冷热电联供系统优化[J]. 电力系统保护与控制, 2020, 48 (10): 123- 130. |
YUN Baoji, BAI Senke, ZHANG Guo. Optimization of CCHP system based on a chaos adaptive particle swarm optimization algorithm[J]. Power System Protection and Control, 2020, 48 (10): 123- 130. | |
13 | 王欣欣, 董潇健, 沈佳妮, 等. 冷热电联供系统设计和运行集成优化[J]. 化工学报, 2021, 72 (10): 5284- 5293. |
WANG Xinxin, DONG Xiaojian, SHEN Jiani, et al. Integrated design and operation of combined cooling, heating and power system[J]. CIESC Journal, 2021, 72 (10): 5284- 5293. | |
14 |
AGHAEI A T, SARAY R K. Optimization of a combined cooling, heating, and power (CCHP) system with a gas turbine prime mover: a case study in the dairy industry[J]. Energy, 2021, 229, 120788.
DOI |
15 |
HOSSEIN ABBASI M, SAYYAADI H, TAHMASBZADEBAIE M. A methodology to obtain the foremost type and optimal size of the prime mover of a CCHP system for a large-scale residential application[J]. Applied Thermal Engineering, 2018, 135, 389- 405.
DOI |
16 | 宋祉慧, 林其钊, 刘涛, 等. 基于动态负荷的冷热电联供系统优化研究[J]. 工程热物理学报, 2020, 41 (10): 2372- 2379. |
SONG Zhihui, LIN Qizhao, LIU Tao, et al. Study on optimization of CCHP system based on dynamic load[J]. Journal of Engineering Thermophysics, 2020, 41 (10): 2372- 2379. | |
17 | 王智, 陶鸿俊, 张玲. 冷热电联供系统多时间尺度滚动优化运行方法研究[J]. 动力工程学报, 2022, 42 (3): 276- 285. |
WANG Zhi, TAO Hongjun, ZHANG Ling. Research on multi-time scale rolling optimal operation method of combined cooling, heating and power system[J]. Journal of Chinese Society of Power Engineering, 2022, 42 (3): 276- 285. | |
18 | 贺庆, 常大伟, 张俊礼, 等. 天然气冷热电联产系统区间负荷调度策略优化[J]. 动力工程学报, 2022, 42 (4): 365- 371. |
HE Qing, CHANG Dawei, ZHANG Junli, et al. Optimization of interval load scheduling strategy for a CCHP system using natural gas[J]. Journal of Chinese Society of Power Engineering, 2022, 42 (4): 365- 371. | |
19 | 孙强, 谢典, 聂青云, 等. 含电-热-冷-气负荷的园区综合能源系统经济优化调度研究[J]. 中国电力, 2020, 53 (4): 79- 88. |
SUN Qiang, XIE Dian, NIE Qingyun, et al. Research on economic optimization scheduling of park integrated energy system with electricity-heat-cool-gas load[J]. Electric Power, 2020, 53 (4): 79- 88. | |
20 | 王泽森, 石岩, 唐艳梅, 等. 考虑LCA能源链与碳交易机制的综合能源系统低碳经济运行及能效分析[J]. 中国电机工程学报, 2019, 39 (6): 1614- 1626,1858. |
WANG Zesen, SHI Yan, TANG Yanmei, et al. Low carbon economy operation and energy efficiency analysis of integrated energy systems considering LCA energy chain and carbon trading mechanism[J]. Proceedings of the CSEE, 2019, 39 (6): 1614- 1626,1858. | |
21 | 方仍存, 杨洁, 周奎, 等. 计及全生命周期碳成本的园区综合能源系统优化规划方法[J]. 中国电力, 2022, 55 (12): 135- 146. |
FANG Rengcun, YANG Jie, ZHOU Kui, et al. An optimal planning method for park IES considering life cycle carbon cost[J]. Electric Power, 2022, 55 (12): 135- 146. | |
22 | 耿健, 杨冬梅, 高正平, 等. 含储能的冷热电联供分布式综合能源微网优化运行[J]. 电力工程技术, 2021, 40 (1): 25- 32. |
GENG Jian, YANG Dongmei, GAO Zhengpng, et al. Optimal operation of distributed integration energy mirogrid with CCHP considering energy storage[J]. Electric Power Engineering Technology, 2021, 40 (1): 25- 32. |
[1] | Xing FENG, Wei YANG, Anan ZHANG, Xi ZHANG, Qian LI, Xianzhang LEI. Capacity Optimization Configuration of a Bidirectional Reversible Centralized Electrohydrogen Coupling System [J]. Electric Power, 2024, 57(8): 1-11. |
[2] | Muyu ZHU, Hongzhong MA, Pengyu GUO, Wenjing XUAN. State of Charge Estimation of Energy Storage Battery Pack under Typical Peak/Frequency Modulation Conditions [J]. Electric Power, 2024, 57(6): 18-26. |
[3] | Mingwei WANG, Tiantian LIU, Qi GAO, Chunwei WANG, Jiyong SHEN, Shoufu LIU, Suoying HE. Design and Operating Performance of Mechanical Draft Dry Cooling Tower Pre-cooled with Wet Medium [J]. Electric Power, 2024, 57(6): 225-234. |
[4] | Jian LIANG, Meng WANG, Yaxin YANG, Yang HU, Erren YAO. Thermodynamic Analysis of CCHP with Compressed Air Energy Storage and Enhanced Geothermal Technology [J]. Electric Power, 2024, 57(1): 209-218. |
[5] | GENG Zhi, LU Xiangwu, WANG Jianli, SHI Tianqing, CHANG Xucheng, GU Yujiong. Optimization of Cooling Channel Structure and Numerical Simulation of Heat Transfer with Flow for CPC Collector [J]. Electric Power, 2023, 56(9): 206-214. |
[6] | LIU Wenjie, PENG Cihua, YAO Jian, JIA Teng, DAI Yanjun. Simulation and Analysis on the Solar-Assisted Direct-Expansion PVT Heat Pump Hot Water System in Lingang [J]. Electric Power, 2023, 56(3): 23-29. |
[7] | MA Guangbai, YANG Zhaohui, SU Shiqiang, DAI Yanjun. Experimental and Performance Analysis of Direct Expansion Solar Assisted Heat Pump System for Space Heating [J]. Electric Power, 2023, 56(3): 47-54,63. |
[8] | QU Litao, QI Xiaohui, WANG Dexin, YU Honghai. Analysis of Air Pollutant Emission Characteristics of Ultra-low Emission Coal-Fired Units Based on CEMS Data [J]. Electric Power, 2023, 56(2): 171-178. |
[9] | Cheng LI, Jie ZHANG, Ke SHI, Minghua XUE, Bo FENG. Control Strategy and Optimal Configuration of Active-Support-Grid Type Decentralized Energy Storage System for Wind Farms [J]. Electric Power, 2023, 56(12): 238-247. |
[10] | ZHAO Huiru, ZHAO Yihang, WANG Luyao, FENG Kaixin, LI Bingkang, GUO Sen. Comprehensive Performance Evaluation of UHV Power Transmission Project Based on Bayesian Best-Worst Method and Improved Matter-Element Extension Model [J]. Electric Power, 2022, 55(6): 161-171. |
[11] | LI Cunbin, DONG Jia. Regional Differences and Spatial Econometric Analysis of Wind Power Generation Performance in China [J]. Electric Power, 2022, 55(3): 167-176. |
[12] | CHEN Chen, JIA Shuya, LIU Dingjia, JIA Haiwei, ZHANG Ying, QU Yanchao. Research on the Activation Change of Plate-Type Anti-arsenic-poisoning SCR De-NOx Catalyst in High-Arsenic Flue Gas [J]. Electric Power, 2022, 55(11): 202-208. |
[13] | LIU Ruifeng, QI Xiaofang, HE Yuankang, CHEN Tian’en, LUO Xuan, ZHANG Wen. Analysis on Operation Performance of Power Market and Clean Energy Transactions in Northwest China [J]. Electric Power, 2022, 55(1): 159-167. |
[14] | DU Xuhao, LI Bingyu, MIAO Junjie, GUO Xiaofan. Operation Condition and Performance Test Analysis of Distributed Energy Storage Battery [J]. Electric Power, 2021, 54(9): 119-124. |
[15] | GENG Zhi, LIU Enshuai, XU Xipu, GU Yujiong, WEN Zhenhua, LI Renfeng. Performance Analysis of Low Temperature Waste Heat Power Generation Cycle with Single Working Fluid [J]. Electric Power, 2021, 54(9): 198-207. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||