Electric Power ›› 2024, Vol. 57 ›› Issue (6): 45-52.DOI: 10.11930/j.issn.1004-9649.202401124
• Key Safety Technology of Lithium-Ion Battery Body for Energy Storage • Previous Articles Next Articles
					
													Hao PENG1(
), Zhengjing LUO1(
), Xiangyang XIA2(
), Gang ZENG1(
), Yujian OU1(
), Guiquan CHEN2(
), Jijun WANG1(
), Lihong LIU1(
)
												  
						
						
						
					
				
Received:2024-01-30
															
							
															
							
																	Accepted:2024-04-29
															
							
																	Online:2024-06-23
															
							
							
																	Published:2024-06-28
															
							
						Supported by:Hao PENG, Zhengjing LUO, Xiangyang XIA, Gang ZENG, Yujian OU, Guiquan CHEN, Jijun WANG, Lihong LIU. Health State Equalization Control Strategy for Multi-battery Clusters in Energy Storage Systems[J]. Electric Power, 2024, 57(6): 45-52.
| SOH1 | SOH2 | ··· | SOHm | |||||
| SOH1 | 1 | a12 | ··· | a1m | ||||
| SOH2 | a21 | 1 | ··· | a2m | ||||
| SOHm | am1 | am2 | ··· | 1 | 
Table 1 Judgment matrix of goal and indicator levels
| SOH1 | SOH2 | ··· | SOHm | |||||
| SOH1 | 1 | a12 | ··· | a1m | ||||
| SOH2 | a21 | 1 | ··· | a2m | ||||
| SOHm | am1 | am2 | ··· | 1 | 
| 参数 | 数值 | |
| 储能系统直流侧电压/V | 800 | |
| 电网电压/V | 380 | |
| 储能系统交流侧电感/mH | 21 | |
| 单台PCS额定运行功率/kW | 15 | |
| 单台PCS转换功率下限/kW | 6 | |
| SOH1/% | 98 | |
| SOH2/% | 94 | |
| SOH3/% | 92 | |
| SOH4/% | 90 | 
Table 2 Partial simulation parameters
| 参数 | 数值 | |
| 储能系统直流侧电压/V | 800 | |
| 电网电压/V | 380 | |
| 储能系统交流侧电感/mH | 21 | |
| 单台PCS额定运行功率/kW | 15 | |
| 单台PCS转换功率下限/kW | 6 | |
| SOH1/% | 98 | |
| SOH2/% | 94 | |
| SOH3/% | 92 | |
| SOH4/% | 90 | 
| 因素i比因素j | 量化值 | |
| 同等重要 | 1 | |
| 稍微重要 | 3 | |
| 较强重要 | 5 | |
| 强烈重要 | 7 | |
| 极端重要 | 9 | |
| 两相邻判断的中间值 | 2,4,6,8 | 
Table 3 Scoring reference of battery cluster health state
| 因素i比因素j | 量化值 | |
| 同等重要 | 1 | |
| 稍微重要 | 3 | |
| 较强重要 | 5 | |
| 强烈重要 | 7 | |
| 极端重要 | 9 | |
| 两相邻判断的中间值 | 2,4,6,8 | 
| SOH1 | SOH2 | SOH3 | SOH4 | |||||
| SOH1 | 1 | 8.2/6.6 | 8.2/5.8 | 8.2/5 | ||||
| SOH2 | 6.6/8.2 | 1 | 6.6/5.8 | 6.6/5 | ||||
| SOH3 | 5.8/8.2 | 5.8/6.6 | 1 | 5.8/5 | ||||
| SOH4 | 5/8.2 | 5/6.6 | 5/5.8 | 1 | 
Table 4 Judgment matrix for goal and indicator levels
| SOH1 | SOH2 | SOH3 | SOH4 | |||||
| SOH1 | 1 | 8.2/6.6 | 8.2/5.8 | 8.2/5 | ||||
| SOH2 | 6.6/8.2 | 1 | 6.6/5.8 | 6.6/5 | ||||
| SOH3 | 5.8/8.2 | 5.8/6.6 | 1 | 5.8/5 | ||||
| SOH4 | 5/8.2 | 5/6.6 | 5/5.8 | 1 | 
| SOH1 | SOH2 | SOH3 | SOH4 | |||||
| SOH1 | 0.3203 | 0.3203 | 0.3203 | 0.3203 | ||||
| SOH2 | 0.2578 | 0.2578 | 0.2578 | 0.2578 | ||||
| SOH3 | 0.2266 | 0.2266 | 0.2266 | 0.2266 | ||||
| SOH4 | 0.1953 | 0.1953 | 0.1953 | 0.1953 | 
Table 5 Normalized judgment matrices for target and indicator levels
| SOH1 | SOH2 | SOH3 | SOH4 | |||||
| SOH1 | 0.3203 | 0.3203 | 0.3203 | 0.3203 | ||||
| SOH2 | 0.2578 | 0.2578 | 0.2578 | 0.2578 | ||||
| SOH3 | 0.2266 | 0.2266 | 0.2266 | 0.2266 | ||||
| SOH4 | 0.1953 | 0.1953 | 0.1953 | 0.1953 | 
| SOH1 | SOH2 | SOH3 | ||||
| SOH1 | 1 | 8.2/6.6 | 8.2/5.8 | |||
| SOH2 | 6.6/8.2 | 1 | 6.6/5.8 | |||
| SOH3 | 5.8/8.2 | 5.8/6.6 | 1 | 
Table 6 Judgment matrix of new goal and indicator level
| SOH1 | SOH2 | SOH3 | ||||
| SOH1 | 1 | 8.2/6.6 | 8.2/5.8 | |||
| SOH2 | 6.6/8.2 | 1 | 6.6/5.8 | |||
| SOH3 | 5.8/8.2 | 5.8/6.6 | 1 | 
| 1 |  
											舒印彪, 陈国平, 贺静波, 等. 构建以新能源为主体的新型电力系统框架研究[J]. 中国工程科学, 2021, 23 (6): 61- 69. 
																							 DOI  | 
										
|  
											SHU Yinbiao, CHEN Guoping, HE Jingbo, et al. Building a new electric power system based on new energy sources[J]. Strategic Study of CAE, 2021, 23 (6): 61- 69. 
																							 DOI  | 
										|
| 2 | 张嘉诚, 夏向阳, 邓子豪, 等. 储能电站安全参与电网一次调频的优化控制策略[J]. 中国电力, 2022, 55 (2): 19- 27. | 
| ZHANG Jiacheng, XIA Xiangyang, DENG Zihao, et al. Optimal control strategy for energy storage power station in primary frequency regulation of power grid[J]. Electric Power, 2022, 55 (2): 19- 27. | |
| 3 | 文劲宇, 周博, 魏利屾. 中国未来电力系统储电网初探[J]. 电力系统保护与控制, 2022, 50 (7): 1- 10. | 
| WEN Jinyu, ZHOU Bo, WEI Lishen. Preliminary study on an energy storage grid for future power system in China[J]. Power System Protection and Control, 2022, 50 (7): 1- 10. | |
| 4 |  
											MCILWAINE N, FOLEY A M, BEST R, et al. Modelling the effect of distributed battery energy storage in an isolated power system[J]. Energy, 2023, 263, 125789. 
																							 DOI  | 
										
| 5 | 周姝灿, 卢洵, 刘新苗, 等. 大容量锂电池储能电站的等值仿真方法[J]. 南方电网技术, 2022, 16 (4): 30- 38. | 
| ZHOU Shucan, LU Xun, LIU Xinmiao, et al. Equivalent simulation method for large capacity lithium battery energy storage power station[J]. Southern Power System Technology, 2022, 16 (4): 30- 38. | |
| 6 |  
											WANG X Y, WEI X Z, ZHU J G, et al. A review of modeling, acquisition, and application of lithium-ion battery impedance for onboard battery management[J]. eTransportation, 2021, 7, 100093. 
																							 DOI  | 
										
| 7 | 谢小荣, 马宁嘉, 刘威, 等. 新型电力系统中储能应用功能的综述与展望[J]. 中国电机工程学报, 2023, 43 (1): 158- 168. | 
| XIE Xiaorong, MA Ningjia, LIU Wei, et al. Functions of energy storage in renewable energy dominated power systems: review and prospect[J]. Proceedings of the CSEE, 2023, 43 (1): 158- 168. | |
| 8 |  
											BARCELLONA S, COLNAGO S, CODECASA L, et al. Unified model of lithium-ion battery and electrochemical storage system[J]. Journal of Energy Storage, 2023, 73, 109202. 
																							 DOI  | 
										
| 9 | DU J Y, ZHANG X B, WANG T Z, et al. Battery degradation minimization oriented energy management strategy for plug-in hybrid electric bus with multi-energy storage system[J]. Energy, 2018, 165, 153- 163. | 
| 10 | 薄利明, 郑惠萍, 张世锋, 等. 锂电池健康状态均衡技术综述[J]. 电测与仪表, 2023, 60 (4): 11- 18. | 
| BO Liming, ZHENG Huiping, ZHANG Shifeng, et al. Review on health state equalization technology for lithium batteries[J]. Electrical Measurement & Instrumentation, 2023, 60 (4): 11- 18. | |
| 11 | 周頔, 宋显华, 卢文斌, 等. 基于日常片段充电数据的锂电池健康状态实时评估方法研究[J]. 中国电机工程学报, 2019, 39 (1): 105- 111. | 
| ZHOU Di, SONG Xianhua, LU Wenbin, et al. Real-time SOH estimation algorithm for lithium-ion batteries based on daily segment charging data[J]. Proceedings of the CSEE, 2019, 39 (1): 105- 111. | |
| 12 |  
											SHILI S, HIJAZI A, SARI A L, et al. Balancing circuit new control for supercapacitor storage system lifetime maximization[J]. IEEE Transactions on Power Electronics, 2017, 32 (6): 4939- 4948. 
																							 DOI  | 
										
| 13 | LACEY G L. Balancing 2nd life batteries with different SOH for use in storage systems[C]//CIRED 2021 - The 26th International Conference and Exhibition on Electricity Distribution. Online Conference. London: IET, 2021: 1832–1837. | 
| 14 |  
											LI N, GAO F, HAO T Q, et al. SOH balancing control method for the MMC battery energy storage system[J]. IEEE Transactions on Industrial Electronics, 2018, 65 (8): 6581- 6591. 
																							 DOI  | 
										
| 15 | 李楠, 高峰. 基于储能型模块化多电平系统的多时间尺度控制策略[J]. 电工技术学报, 2017, 32 (17): 47- 56. | 
| LI Nan, GAO Feng. Multi-time scale operational principle for battery integrated modular multilevel converter[J]. Transactions of China Electrotechnical Society, 2017, 32 (17): 47- 56. | |
| 16 |  
											MA Z, GAO F, GU X, et al. Multilayer SOH equalization scheme for MMC battery energy storage system[J]. IEEE Transactions on Power Electronics, 2020, 35 (12): 13514- 13527. 
																							 DOI  | 
										
| 17 | 吴青峰, 智泽英, 于少娟, 等. 基于多代理的微电网分布式储能系统健康状态平衡方案[J]. 太阳能学报, 2022, 43 (2): 104- 112. | 
| WU Qingfeng, ZHI Zeying, YU Shaojuan, et al. Soh balancing scheme for distributed energy storage systems in microgrid based on multi-agent[J]. Acta Energiae Solaris Sinica, 2022, 43 (2): 104- 112. | |
| 18 |  
											GAO X J, WU X G, XIA Y L, et al. Life extension of a multi-unit energy storage system by optimizing the power distribution based on the degradation ratio[J]. Energy, 2024, 286, 129598. 
																							 DOI  | 
										
| 19 |  
											TREMBLAY O, DESSAINT L A. Experimental validation of a battery dynamic model for EV applications[J]. World Electric Vehicle Journal, 2009, 3 (2): 289- 298. 
																							 DOI  | 
										
| 20 |  
											OMAR N, ABDEL MONEM M, FIROUZ Y, et al. Lithium iron phosphate based battery: assessment of the aging parameters and development of cycle life model[J]. Applied Energy, 2014, 113, 1575- 1585. 
																							 DOI  | 
										
| 21 | SIMULINK: Generic battery model[EB/OL].https://www.mathworks.com/help/releases/R2022a/physmod/sps/powersys/ref/battery.html. | 
| 22 | 王聪聪, 叶思成, 裴春兴, 等. 电池健康状态实验与评估方法综述[J]. 电池, 2021, 51 (2): 197- 200. | 
| WANG Congcong, YE Sicheng, PEI Chunxing, et al. Review on battery state-of-health experiment and estimation methods[J]. Battery Bimonthly, 2021, 51 (2): 197- 200. | |
| 23 | 黎冲, 王成辉, 王高, 等. 基于数据驱动的锂离子电池健康状态估计技术[J]. 中国电力, 2022, 55 (8): 73- 86, 95. | 
| LI Chong, WANG Chenghui, WANG Gao, et al. Technology of lithium-ion battery state-of-health assessment based on data-driven[J]. Electric Power, 2022, 55 (8): 73- 86, 95. | |
| 24 | 夏向阳, 陈贵全, 刘俊翔, 等. 储能系统直流侧纹波电流对锂离子电池寿命影响分析及优化控制策略[J]. 电工技术学报, 2023, 38 (22): 6218- 6229. | 
| XIA Xiangyang, CHEN Guiquan, LIU Junxiang, et al. Analysis and optimization control strategy of the impact of DC ripple current on the lifespan of lithium-ion batteries in energy storage systems[J]. Journal of Electrical Engineering, 2023, 38 (22): 6218- 6229. | |
| 25 |  
											BESSMAN A, SOARES R, WALLMARK O, et al. Aging effects of AC harmonics on lithium-ion cells[J]. Journal of Energy Storage, 2019, 21, 741- 749. 
																							 DOI  | 
										
| 26 | BALA S, TENGNÉR T, ROSENFELD P, et al. The effect of low frequency current ripple on the performance of a Lithium Iron Phosphate (LFP) battery energy storage system[C]//2012 IEEE Energy Conversion Congress and Exposition (ECCE). Raleigh, NC, USA. IEEE, 2012: 3485–3492. | 
| 27 | 张雪. 非隔离型光伏并网逆变器高效MPPT控制方法研究[D]. 广州: 华南理工大学, 2012. | 
| ZHANG Xue. Study of high efficiency MPPT control method of non-isolated grid-connected PV inverter[D]. Guangzhou: South China University of Technology, 2012. | |
| 28 | 张思章. 高频隔离型并网逆变器的研制[D]. 广州: 华南理工大学, 2012. | 
| ZHANG Sizhang. Development of high frequency isolated grid-connected inverter[D]. Guangzhou: South China University of Technology, 2012. | 
| [1] | MAN Linkun, WU Keming, CHI Cheng, YOU Jinshi, ZHAO Zitong, ZHANG Yajian. Adaptive Load Frequency Control Strategy for Interconnected Power Systems Considering Stochastic Access/Exit Behaviors of Energy Storage Systems [J]. Electric Power, 2025, 58(9): 164-174. | 
| [2] | WANG Yong, WANG Hui, HU Yahan, Zhao Peng, LI Xuenan. Microgrid Optimization and Power Quality Improvement Based on Wind-Solar Hybrid Energy Storage System [J]. Electric Power, 2025, 58(7): 162-167. | 
| [3] | ZHANG Jie, HUA Yufei, WANG Chen. A Demand Side Adjustment Capacity Sharing Model Based on Cooperative Game [J]. Electric Power, 2025, 58(6): 45-55. | 
| [4] | XIAO Xiangqi, ZOU Sheng, HE Xing, XIAO Jianhong, MA Bin. Output Power Optimization of Photovoltaic and Energy Storage Hybrid System Based on Fuzzy Control Algorithm [J]. Electric Power, 2025, 58(6): 67-75. | 
| [5] | Lei ZHANG, Xiaowei MA, Manliang WANG, Li CHEN, Bingtuan GAO. Distributed Collaborative Control Strategy for Intra-regional AGC Units in Interconnected Power System with Renewable Energy [J]. Electric Power, 2025, 58(3): 8-19. | 
| [6] | Yushan LIU, Junru CHEN, Xiqiang CHANG, Muyang LIU. Multi-level Evaluation Index System and Application of Grid-Connected Performance of Grid-Forming Energy Storage Converters [J]. Electric Power, 2025, 58(3): 193-203. | 
| [7] | LIAO Jian, ZHANG Yao, ZHANG Beixi, DONG Haomiao, LI Jiaxing, SUN Qianhao. A Robust Joint Planning Method for Soft Open Points and Energy Storage Systems in AC/DC Hybrid Distribution Networks Considering Electric Vehicle Demand Response [J]. Electric Power, 2025, 58(10): 82-96. | 
| [8] | Yuqing WANG, Min ZHANG, Jiaxing WANG, Bohao LI, Tianyang YANG, Ming ZENG. Rental Price Decision of Shared Energy Storage Capacity Based on Supermodular Game [J]. Electric Power, 2025, 58(1): 164-173. | 
| [9] | Guomin QI, Tianye LI, Hong YU, Bolun LU, Baozhong MA, Wenxin ZHANG, Entong WU, Xianyao XIAO. Capacity Allocation and Operation Optimization Model of Household Photovoltaic-Storage System Based on MPC [J]. Electric Power, 2025, 58(1): 185-195. | 
| [10] | Chouwei NI, Yang CHEN, Xuesong ZHANG, Da LIN, Kaijian DU, Jian CHEN. Optimal Configuration Method for Electric-thermo-hydrogen System Considering Safety Risks [J]. Electric Power, 2024, 57(9): 124-135. | 
| [11] | Luyang LI, Longxiang CHEN, Lei CHEN, Dawei SUN, Linlin WU, Yong MIN. Research on Economic Configuration of Energy Storage for Assisting New Energy in Primary Frequency Regulation [J]. Electric Power, 2024, 57(7): 54-65. | 
| [12] | Fengliang XU, Keqian WANG, Wenhao WANG, Peng WANG, Huanchang WANG, Shuai Zhang, Fengzhan ZHAO. Collaborative Expansion Planning of Source-Grid-Storage in Medium Voltage Distribution System Considering Operational Flexibility [J]. Electric Power, 2024, 57(7): 98-108. | 
| [13] | Jinglin HAN, Ping HU, Ruosong HOU, Zhiyong CHEN, Hongtao LI, Yuanyuan CHAI. Voltage Optimal Control Strategy for Distribution Networks with Multiple Integrated Photovoltaic and Energy Storage Machines [J]. Electric Power, 2024, 57(6): 69-77, 152. | 
| [14] | Yu CAO, Pengfei HU, Wanqi CAI, Xi WANG, Daozhuo JIANG, Yiqiao LIANG. MMC Based Super Capacitor and Battery Hybrid Energy Storage System and Hybrid Synchronous Control Strategy [J]. Electric Power, 2024, 57(6): 78-89. | 
| [15] | Cailing ZHANG, Shuang WANG, Shuna GE, Deng PAN, Yan ZHANG, Wei HAN, Wenyan DUAN. Optimal Scheduling of Integrated Energy Systems Considering Flexible Demand Response and Carbon Emission-Green Certificate Joint Trading [J]. Electric Power, 2024, 57(5): 14-25. | 
| Viewed | ||||||
| 
										Full text | 
									
										 | 
								|||||
| 
										Abstract | 
									
										 | 
								|||||
