Electric Power ›› 2024, Vol. 57 ›› Issue (4): 1-13.DOI: 10.11930/j.issn.1004-9649.202303062
• Optimization Configuration Strategy for Integrated Energy System • Previous Articles Next Articles
Zimeng LI1(), Tiankuo WANG2(
), Pengfei HU1(
), Yanxue YU1, Yi DU3, Qiyuan CAI3
Received:
2023-03-14
Accepted:
2023-06-12
Online:
2024-04-23
Published:
2024-04-28
Supported by:
Zimeng LI, Tiankuo WANG, Pengfei HU, Yanxue YU, Yi DU, Qiyuan CAI. Bi-level Collaborative Configuration Optimization of Biogas-Wind-Solar Integrated Energy System Based on Energy Hub[J]. Electric Power, 2024, 57(4): 1-13.
设备 | 单位额定 容量/kW | 单位额定容量 成本/万元 | 运维系数/ 万元 | 最大允许 安装数量/台 | ||||
风机 | 50.000 | 0.600 | 0.019 | 4 | ||||
PVT | 50.000 | 1.270 | 0.010 | 4 | ||||
沼气池 | 300.000 | 0.500 | 0.011 | 2 | ||||
沼气罐 | 150.000 | 0.170 | 0.011 | 4 | ||||
储能电池 | 100.000 | 0.290 | 0.003 | 4 | ||||
CHP | 100.000 | 0.880 | 0.085 | 10 | ||||
沼气炉 | 100.000 | 0.210 | 0.045 | 10 | ||||
电锅炉 | 50.000 | 0.200 | 0.021 | 5 |
Table 2 Equipment investment and operation & maintenance parameters
设备 | 单位额定 容量/kW | 单位额定容量 成本/万元 | 运维系数/ 万元 | 最大允许 安装数量/台 | ||||
风机 | 50.000 | 0.600 | 0.019 | 4 | ||||
PVT | 50.000 | 1.270 | 0.010 | 4 | ||||
沼气池 | 300.000 | 0.500 | 0.011 | 2 | ||||
沼气罐 | 150.000 | 0.170 | 0.011 | 4 | ||||
储能电池 | 100.000 | 0.290 | 0.003 | 4 | ||||
CHP | 100.000 | 0.880 | 0.085 | 10 | ||||
沼气炉 | 100.000 | 0.210 | 0.045 | 10 | ||||
电锅炉 | 50.000 | 0.200 | 0.021 | 5 |
时段 | 电价/ (元·(kW·h)–1) | |
高峰时段(08:30—11:30;14:30—16:30;18:00—20:00) | 0.808 | |
平峰时段(06:00—08:30;11:30—14:30;16:30—18:00) | 0.548 | |
低谷时段(00:00—06:00;20:00—24:00) | 0.288 |
Table 1 Electricity price of Fujian power grid
时段 | 电价/ (元·(kW·h)–1) | |
高峰时段(08:30—11:30;14:30—16:30;18:00—20:00) | 0.808 | |
平峰时段(06:00—08:30;11:30—14:30;16:30—18:00) | 0.548 | |
低谷时段(00:00—06:00;20:00—24:00) | 0.288 |
参数 | 设定值 | 参数 | 设定值 | |||
λon,chp/(元·次–1) | 53.350 | ηe,PVT | 0.450 | |||
λoff,chp/(元·次–1) | 53.350 | ηh,PVT | 0.550 | |||
ηe,CHP | 0.400 | Tin,min/ ℃ | 15.000 | |||
ηh,CHP | 0.450 | Tin,max/ ℃ | 55.000 | |||
Pchp,min/kW | 5.000 | Qbio/((kW·h)·m–3) | 6.110 | |||
Pchp,max/kW | 100.000 | Prbio/(元·(kW·h)–1) | 0.245 | |||
ηf | 0.750 | Sbes,min | 0.100 | |||
Pf,ma/kW | 100.000 | Sbes,max | 1.000 | |||
ηb | 0.750 | Vgs,min/(m3·h–1) | –150.000 | |||
Pb,max/kW | 50.000 | Vgs,max/(m3·h–1) | 150.000 | |||
Gs,grid/(g·(kW·h)–1) | 3.120 | Sbes,min | 0.100 | |||
Gn,grid/(g·(kW·h)–1) | 2.350 | Sbes,max | 0.900 | |||
Gc,grid/(g·(kW·h)–1) | 0.890 | Pch,max/kW | 80.000 | |||
Gc,bio/(kg·m–3) | 1.960 | Pdis,max/kW | 80.000 | |||
Gbef/kg | 3721.550 | ηch | 0.910 | |||
r | 0.050 | ηdis | 0.910 | |||
Ninv | 8.000 | 0.006 | ||||
R | 0.050 | 0.008 | ||||
Pgrid,max/kW | 1000.000 | 0.060 |
Table 3 Equipment technical parameters
参数 | 设定值 | 参数 | 设定值 | |||
λon,chp/(元·次–1) | 53.350 | ηe,PVT | 0.450 | |||
λoff,chp/(元·次–1) | 53.350 | ηh,PVT | 0.550 | |||
ηe,CHP | 0.400 | Tin,min/ ℃ | 15.000 | |||
ηh,CHP | 0.450 | Tin,max/ ℃ | 55.000 | |||
Pchp,min/kW | 5.000 | Qbio/((kW·h)·m–3) | 6.110 | |||
Pchp,max/kW | 100.000 | Prbio/(元·(kW·h)–1) | 0.245 | |||
ηf | 0.750 | Sbes,min | 0.100 | |||
Pf,ma/kW | 100.000 | Sbes,max | 1.000 | |||
ηb | 0.750 | Vgs,min/(m3·h–1) | –150.000 | |||
Pb,max/kW | 50.000 | Vgs,max/(m3·h–1) | 150.000 | |||
Gs,grid/(g·(kW·h)–1) | 3.120 | Sbes,min | 0.100 | |||
Gn,grid/(g·(kW·h)–1) | 2.350 | Sbes,max | 0.900 | |||
Gc,grid/(g·(kW·h)–1) | 0.890 | Pch,max/kW | 80.000 | |||
Gc,bio/(kg·m–3) | 1.960 | Pdis,max/kW | 80.000 | |||
Gbef/kg | 3721.550 | ηch | 0.910 | |||
r | 0.050 | ηdis | 0.910 | |||
Ninv | 8.000 | 0.006 | ||||
R | 0.050 | 0.008 | ||||
Pgrid,max/kW | 1000.000 | 0.060 |
方案 | 上层优化 配置算法 | 下层优化 运行算法 | 上层优化 配置方法 | 下层优化 运行方法 | ||||
1 | NSGA-II算法 | Gurobi 求解器 | 基于Pareto最优解集的多目标优化方法 | 将环保性指标转化为经济性指标的多目标优化方法 | ||||
2 | 遗传算法 | Gurobi 求解器 | 单目标优化方法 | 单目标优化方法 | ||||
3 | 遗传算法 | Gurobi 求解器 | 基于权重分析法的多目标优化方法 | 将环保性指标转化为经济性指标的多目标优化方法 |
Table 4 Collaborative optimization scheme
方案 | 上层优化 配置算法 | 下层优化 运行算法 | 上层优化 配置方法 | 下层优化 运行方法 | ||||
1 | NSGA-II算法 | Gurobi 求解器 | 基于Pareto最优解集的多目标优化方法 | 将环保性指标转化为经济性指标的多目标优化方法 | ||||
2 | 遗传算法 | Gurobi 求解器 | 单目标优化方法 | 单目标优化方法 | ||||
3 | 遗传算法 | Gurobi 求解器 | 基于权重分析法的多目标优化方法 | 将环保性指标转化为经济性指标的多目标优化方法 |
解集 | 风机/ 台 | 光伏/ 台 | 储能 电池/ 台 | 沼气 池/ 台 | 沼气 罐/ 台 | CHP/ 台 | 沼气 炉/ 台 | 电锅 炉/ 台 | 年化总 成本/ (万元·年–1) | 碳排 放量/ (t·年–1) | ||||||||||
折衷解 | 4 | 4 | 1 | 1 | 2 | 1 | 1 | 2 | 105.02 | 697.70 | ||||||||||
典型解1 | 4 | 1 | 1 | 1 | 1 | 1 | 1 | 3 | 90.66 | 823.00 | ||||||||||
典型解2 | 4 | 2 | 1 | 1 | 2 | 1 | 1 | 2 | 95.95 | 777.51 | ||||||||||
典型解3 | 4 | 3 | 1 | 1 | 2 | 1 | 1 | 2 | 100.33 | 737.73 | ||||||||||
典型解4 | 4 | 4 | 2 | 2 | 4 | 1 | 1 | 2 | 126.70 | 680.64 |
Table 5 Scheme I optimized configuration scheme and corresponding optimized results
解集 | 风机/ 台 | 光伏/ 台 | 储能 电池/ 台 | 沼气 池/ 台 | 沼气 罐/ 台 | CHP/ 台 | 沼气 炉/ 台 | 电锅 炉/ 台 | 年化总 成本/ (万元·年–1) | 碳排 放量/ (t·年–1) | ||||||||||
折衷解 | 4 | 4 | 1 | 1 | 2 | 1 | 1 | 2 | 105.02 | 697.70 | ||||||||||
典型解1 | 4 | 1 | 1 | 1 | 1 | 1 | 1 | 3 | 90.66 | 823.00 | ||||||||||
典型解2 | 4 | 2 | 1 | 1 | 2 | 1 | 1 | 2 | 95.95 | 777.51 | ||||||||||
典型解3 | 4 | 3 | 1 | 1 | 2 | 1 | 1 | 2 | 100.33 | 737.73 | ||||||||||
典型解4 | 4 | 4 | 2 | 2 | 4 | 1 | 1 | 2 | 126.70 | 680.64 |
方 案 | 储能 电池/ 台 | 沼气 罐/ 台 | CHP/ 台 | 沼气 炉/ 台 | 电锅 炉/ 台 | 投资 成本/ (万元·年–1) | 运行 成本/ (万元·年–1) | 沼气 产量/ (t·年–1) | 可再生 能源消 纳率/ % | |||||||||
1 | 1 | 2 | 1 | 1 | 2 | 76.60 | 21.95 | 529.70 | 100.00 | |||||||||
2 | 4 | 1 | 3 | 3 | 3 | 111.46 | 41.60 | 143.00 | 69.88 |
Table 6 Comparison results of optimized operation of Scheme I and Scheme II
方 案 | 储能 电池/ 台 | 沼气 罐/ 台 | CHP/ 台 | 沼气 炉/ 台 | 电锅 炉/ 台 | 投资 成本/ (万元·年–1) | 运行 成本/ (万元·年–1) | 沼气 产量/ (t·年–1) | 可再生 能源消 纳率/ % | |||||||||
1 | 1 | 2 | 1 | 1 | 2 | 76.60 | 21.95 | 529.70 | 100.00 | |||||||||
2 | 4 | 1 | 3 | 3 | 3 | 111.46 | 41.60 | 143.00 | 69.88 |
方案 | 碳排 放量/ (t·年–1) | 运行成本/(万元·年–1) | CHP启停成本/(万元·年–1) | 能量转换成本/(万元·年–1) | 购电成本/(万元·年–1) | 污染物排放成本/(万元·年–1) | 碳排放成本/(万元·年–1) | |||||||
1 | 736.7 | 21.95 | 0 | 7.43 | 9.28 | 0.88 | 4.35 | |||||||
3 | 736.3 | 23.30 | 0 | 7.85 | 10.31 | 0.82 | 4.32 |
Table 7 Comparison results of optimized operation of Scheme I and Scheme III
方案 | 碳排 放量/ (t·年–1) | 运行成本/(万元·年–1) | CHP启停成本/(万元·年–1) | 能量转换成本/(万元·年–1) | 购电成本/(万元·年–1) | 污染物排放成本/(万元·年–1) | 碳排放成本/(万元·年–1) | |||||||
1 | 736.7 | 21.95 | 0 | 7.43 | 9.28 | 0.88 | 4.35 | |||||||
3 | 736.3 | 23.30 | 0 | 7.85 | 10.31 | 0.82 | 4.32 |
1 |
ZHOU B, XU D, LI C B, et al. Optimal scheduling of biogas-solar-wind renewable portfolio for multicarrier energy supplies[J]. IEEE Transactions on Power Systems, 2018, 33 (6): 6229- 6239.
DOI |
2 |
YU C T, LAI X Y, CHEN F, et al. Multi-time period optimal dispatch strategy for integrated energy system considering renewable energy generation accommodation[J]. Energies, 2022, 15 (12): 4329.
DOI |
3 | 王瑞, 程杉, 徐建宇, 等. 基于主从博弈和混合需求响应的能量枢纽多时间尺度优化调度策略[J]. 电力自动化设备, 2023, 43 (1): 32- 40. |
WANG Rui, CHENG Shan, XU Jianyu, et al. Multi-time scale optimal scheduling strategy of energy hub based on master-slave game and hybrid demand response[J]. Electric Power Automation Equipment, 2023, 43 (1): 32- 40. | |
4 | 王丹, 孟政吉, 贾宏杰, 等. 基于配置-运行协同优化的分布式能源站选型与定容规划[J]. 电力自动化设备, 2019, 39 (8): 152- 160. |
WANG Dan, MENG Zhengji, JIA Hongjie, et al. Siting and sizing planning for distributed energy station based on coordinated optimization of configuration and operation[J]. Electric Power Automation Equipment, 2019, 39 (8): 152- 160. | |
5 | 宋晨辉, 冯健, 杨东升, 等. 考虑系统耦合性的综合能源协同优化[J]. 电力系统自动化, 2018, 42 (10): 38- 45, 86. |
SONG Chenhui, FENG Jian, YANG Dongsheng, et al. Collaborative optimization of integrated energy considering system coupling[J]. Automation of Electric Power Systems, 2018, 42 (10): 38- 45, 86. | |
6 | 尤森槟, 程志江, 张子建, 等. 风光沼储微电网系统容量优化配置[J]. 中国沼气, 2020, 38 (1): 66- 70. |
YOU Senbin, CHENG Zhijiang, ZHANG Zijian, et al. Optimal capacity allocation of PV-wind-biogas-battery microgrid system[J]. China Biogas, 2020, 38 (1): 66- 70. | |
7 |
LI C B, YANG H Y, SHAHIDEHPOUR M, et al. Optimal planning of islanded integrated energy system with solar-biogas energy supply[J]. IEEE Transactions on Sustainable Energy, 2020, 11 (4): 2437- 2448.
DOI |
8 |
LAI C S, MCCULLOCH M D. Sizing of stand-alone solar PV and storage system with anaerobic digestion biogas power plants[J]. IEEE Transactions on Industrial Electronics, 2017, 64 (3): 2112- 2121.
DOI |
9 | 李民, 刘钦浩, 赵冠, 等. 考虑多元产业协同的乡村综合能源系统规划[J]. 中国电力, 2022, 55 (8): 14- 22. |
LI Min, LIU Qinhao, ZHAO Guan, et al. Rural integrated energy system planning considering multi-industry synergy[J]. Electric Power, 2022, 55 (8): 14- 22. | |
10 | 冯智慧, 吕林, 许立雄. 基于能量枢纽的沼–风–光全可再生能源系统日前–实时两阶段优化调度模型[J]. 电网技术, 2019, 43 (9): 3101- 3109. |
FENG Zhihui, LÜ Lin, XU Lixiong. Two-stage optimal dispatch model of day-ahead and real-time for biogas-wind-solar fully renewable energy system based on energy hub[J]. Power System Technology, 2019, 43 (9): 3101- 3109. | |
11 | 谭洪, 颜伟, 王浩. 基于建筑物热能流分析的沼–风–光孤立微能网优化调度模型[J]. 电网技术, 2020, 44 (7): 2483- 2491. |
TAN Hong, YAN Wei, WANG Hao. Optimal dispatch model of biogas-wind-solar isolated multi-energy micro-grid based on thermal energy flow analysis of buildings[J]. Power System Technology, 2020, 44 (7): 2483- 2491. | |
12 | 王瑞琪, 王新立, 郭光华, 等. 农村光-氢-沼储能综合能源系统建模与鲁棒优化调度[J]. 中国电力, 2023, 56 (5): 89- 98. |
WANG Ruiqi, WANG Xinli, GUO Guanghua, et al. Modeling and robust optimal dispatch of rural integrated energy system considering PV-hydrogen-methane energy storage characteristics[J]. Electric Power, 2023, 56 (5): 89- 98. | |
13 | 边晓燕, 史越奇, 裴传逊, 等. 计及经济性和可靠性因素的区域综合能源系统双层协同优化配置[J]. 电工技术学报, 2021, 36 (21): 4529- 4543. |
BIAN Xiaoyan, SHI Yueqi, PEI Chuanxun, et al. Bi-level collaborative configuration optimization of integrated community energy system considering economy and reliability[J]. Transactions of China Electrotechnical Society, 2021, 36 (21): 4529- 4543. | |
14 | 刘海涛, 朱海南, 李丰硕, 等. 计及碳成本的电-气-热-氢综合能源系统经济运行策略[J]. 电力建设, 2021, 42 (12): 21- 29. |
LIU Haitao, ZHU Hainan, LI Fengshuo, et al. Economic operation strategy of electric-gas-heat-hydrogen integrated energy system considering carbon cost[J]. Electric Power Construction, 2021, 42 (12): 21- 29. | |
15 | 王志贺, 刘元园, 唐沂媛, 等. 考虑二氧化碳排放的冷热电联供系统的容量配置[J]. 电力系统及其自动化学报, 2017, 29 (8): 104- 110. |
WANG Zhihe, LIU Yuanyuan, TANG Yiyuan, et al. Capacity configuration of CCHP system considering carbon dioxide emissions[J]. Proceedings of the CSU-EPSA, 2017, 29 (8): 104- 110. | |
16 | 白凯峰, 顾洁, 彭虹桥, 等. 融合风光出力场景生成的多能互补微网系统优化配置[J]. 电力系统自动化, 2018, 42 (15): 133- 141. |
BAI Kaifeng, GU Jie, PENG Hongqiao, et al. Optimal allocation for multi-energy complementary microgrid based on scenario generation of wind power and photovoltaic output[J]. Automation of Electric Power Systems, 2018, 42 (15): 133- 141. | |
17 | 刁涵彬, 李培强, 吕小秀, 等. 考虑多元储能差异性的区域综合能源系统储能协同优化配置[J]. 电工技术学报, 2021, 36 (1): 151- 165. |
DIAO Hanbin, LI Peiqiang, LÜ Xiaoxiu, et al. Coordinated optimal allocation of energy storage in regional integrated energy system considering the diversity of multi-energy storage[J]. Transactions of China Electrotechnical Society, 2021, 36 (1): 151- 165. | |
18 | 刘广, 白晓清, 刁天一. 考虑气电网络架构的沼-风-光综合能源微网优化调度[J]. 电网与清洁能源, 2020, 36 (12): 49- 58. |
LIU Guang, BAI Xiaoqing, DIAO Tianyi. Optimal scheduling of biogas-wind-solar integrated energy microgrid system considering gas-power network architecture[J]. Power System and Clean Energy, 2020, 36 (12): 49- 58. | |
19 |
WU T, BU S Q, WEI X, et al. Multitasking multi-objective operation optimization of integrated energy system considering biogas-solar-wind renewables[J]. Energy Conversion and Management, 2021, 229, 113736.
DOI |
20 | 白斌, 韩明亮, 林江, 等. 含风电和光伏的可再生能源场景削减方法[J]. 电力系统保护与控制, 2021, 49 (15): 141- 149. |
BAI Bin, HAN Mingliang, LIN Jiang, et al. Scenario reduction method of renewable energy including wind power and photovoltaic[J]. Power System Protection and Control, 2021, 49 (15): 141- 149. | |
21 | 孙惠娟, 方杜, 彭春华. 基于可拓距K-均值聚类和正弦微分进化算法的风储联合系统优化配置[J]. 电力自动化设备, 2021, 41 (10): 20- 27. |
SUN Huijuan, FANG Du, PENG Chunhua. Optimal allocation of wind-energy storage combined system based on extension distance K-means clustering and sine differential evolution algorithm[J]. Electric Power Automation Equipment, 2021, 41 (10): 20- 27. | |
22 | 吴静, 德格吉日夫, 谭忠富, 等. 计及P2G与CCHP技术的综合能源系统多目标协同优化模型[J]. 电测与仪表, 2021, 58 (5): 20- 30. |
WU Jing, DE Gejirifu, TAN Zhongfu, et al. Multi-objective coordinated optimization model for integrated energy systems with power-to-gas and combined-cooling-heating-power technologies[J]. Electrical Measurement & Instrumentation, 2021, 58 (5): 20- 30. | |
23 | 张博智, 卢妍, 谭晨, 等. 光伏光热互补发电系统多目标容量优化研究[J]. 热力发电, 2022, 51 (5): 9- 17. |
ZHANG Bozhi, LU Yan, TAN Chen, et al. Research on multi-objective capacity optimization of PV-CSP hybrid system[J]. Thermal Power Generation, 2022, 51 (5): 9- 17. | |
24 | 查永星. 综合能源系统调度优化的分解型交叉熵算法[D]. 深圳: 深圳大学, 2020. |
ZHA Yongxing. Decomposition-based cross-entropy algorithm for scheduling optimization of integrated energy systems[D]. Shenzhen: Shenzhen University, 2020. |
[1] | Lei ZHANG, Xiaowei MA, Manliang WANG, Li CHEN, Bingtuan GAO. Distributed Collaborative Control Strategy for Intra-regional AGC Units in Interconnected Power System with Renewable Energy [J]. Electric Power, 2025, 58(3): 8-19. |
[2] | Luyang LI, Longxiang CHEN, Lei CHEN, Dawei SUN, Linlin WU, Yong MIN. Research on Economic Configuration of Energy Storage for Assisting New Energy in Primary Frequency Regulation [J]. Electric Power, 2024, 57(7): 54-65. |
[3] | Hao PENG, Zhengjing LUO, Xiangyang XIA, Gang ZENG, Yujian OU, Guiquan CHEN, Jijun WANG, Lihong LIU. Health State Equalization Control Strategy for Multi-battery Clusters in Energy Storage Systems [J]. Electric Power, 2024, 57(6): 45-52. |
[4] | Cailing ZHANG, Shuang WANG, Shuna GE, Deng PAN, Yan ZHANG, Wei HAN, Wenyan DUAN. Optimal Scheduling of Integrated Energy Systems Considering Flexible Demand Response and Carbon Emission-Green Certificate Joint Trading [J]. Electric Power, 2024, 57(5): 14-25. |
[5] | Dongshun ZHANG, Hengli QUAN, Hua XIE, Zhihong XU, Yayun TAO, Huisheng WANG. Dispatching Strategy of Park-Level Integrated Energy System Considering Carbon Trading Mechanism and Hydrogen Blending Natural Gas [J]. Electric Power, 2024, 57(2): 183-193. |
[6] | Xiang WANG, Xiandong TAN, Chenglong ZHANG, Qing LIU, Yifan ZHANG. Analysis and Prospect of Gap Between Electricity Consumption and Economic Growth in China in Recent Years [J]. Electric Power, 2024, 57(10): 199-207. |
[7] | YUAN Tiejiang, ZHANG Hong, YANG Yang, WANG Zhengyi. Whole Life Cycle Economic Assessment of Renewable Energy-PEM Electrolyzer Hydrogen Production [J]. Electric Power, 2023, 56(3): 30-35,46. |
[8] | XU Yanping, SHI Haobo, QIN Xiaohui, ZHAO Mingxin, BAI Jie, Ding Baodi. Analysis of Investment Economy of Electric Boilers with Thermal Storage in Source-Load Application Scenarios [J]. Electric Power, 2023, 56(2): 123-132. |
[9] | CHEN Jialun, JIANG Huanchun, BIAN Shaoshuai, KANG Yingzhe, WU Zhe, HUANG Xin. Study on Operating Optimization of 660 MW Multi-stage Heating Unit Combined with Electric Boiler [J]. Electric Power, 2022, 55(5): 189-195. |
[10] | ZHENG Kuan, XU Zhicheng, LU Gang, ZHANG Fuqiang, FENG Junshu, ZHANG Jinfang. Coordinated Development Strategy for Nuclear Power and New Energy in the Evolution Process of Power System with High Penetration of New Energy [J]. Electric Power, 2021, 54(7): 27-35. |
[11] | LIU Jiale, MA Suxia, MA Honghe, ZHANG Lifang. Analysis on Thermal Peak Shaving and Economic Performance of Gas-Fired Unit [J]. Electric Power, 2021, 54(6): 104-110. |
[12] | ZHANG Yunzhou, ZHANG Ning, DAI Hongcai, ZHANG Siyu, WU Xiaoyu, XUE Meimei. Model Construction and Pathways of Low-Carbon Transition of China's Power System [J]. Electric Power, 2021, 54(3): 1-11. |
[13] | YANG Su, WU Zechen, WANG Donghui, HU Yuan. The Impacts of Key Technology Development on the Natural Monopoly Attributes of Distribution Network [J]. Electric Power, 2021, 54(2): 175-181. |
[14] | CHAI Youguo, HE Xiaoyan, SU Yongjian, DING Banglin, HU Weiming, YANG Zhiping. Economic Research on Peak Shaving of Thermal Power Units Considering Safety-Environmental Protection and Compensation [J]. Electric Power, 2021, 54(11): 199-205. |
[15] | SHI Zhiyong, WANG Caixia, LI Qionghui. Key Issues of China's Offshore Wind Power Development in the “14th Five-Year Plan” [J]. Electric Power, 2020, 53(7): 8-17. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||