Electric Power ›› 2024, Vol. 57 ›› Issue (10): 102-114.DOI: 10.11930/j.issn.1004-9649.202403054
• Key Technologies for Protection and Control of New Distribution System • Previous Articles Next Articles
Zhihui DAI1(), Meiyuan LIU1(
), Shuqing WEI1, Weiping ZHU2, Wenzhuo WANG1
Received:
2024-03-14
Accepted:
2024-06-12
Online:
2024-10-23
Published:
2024-10-28
Supported by:
Zhihui DAI, Meiyuan LIU, Shuqing WEI, Weiping ZHU, Wenzhuo WANG. Distance Protection for Outgoing Line of Photovoltaic Station Based on Superconducting Magnetic Energy Storage[J]. Electric Power, 2024, 57(10): 102-114.
系统参数 | 数值 | 系统参数 | 数值 | |||
正序电阻/(Ω·km–1) | 0.14 | 正序电抗/(Ω·km–1) | 0.38 | |||
零序电阻/(Ω·km–1) | 0.39 | 零序电抗/(Ω·km–1) | 1.18 | |||
额定电压/kV | 35 | 频率/Hz | 50 | |||
光伏场站容量/MW | 10 | 系统短路容量/MW | 200 | |||
线路长度/km | 100 |
Table 1 Parameters of simulation model
系统参数 | 数值 | 系统参数 | 数值 | |||
正序电阻/(Ω·km–1) | 0.14 | 正序电抗/(Ω·km–1) | 0.38 | |||
零序电阻/(Ω·km–1) | 0.39 | 零序电抗/(Ω·km–1) | 1.18 | |||
额定电压/kV | 35 | 频率/Hz | 50 | |||
光伏场站容量/MW | 10 | 系统短路容量/MW | 200 | |||
线路长度/km | 100 |
故障类型 | Rf/Ω | ltrue/km | lcal/km | |||
AG | 20 | 10 | 10.34 | |||
20 | 40 | 40.27 | ||||
20 | 70 | 70.33 | ||||
BC | 20 | 10 | 10.53 | |||
20 | 40 | 40.39 | ||||
20 | 70 | 70.41 | ||||
BCG | 20 | 10 | 10.61 | |||
20 | 40 | 40.65 | ||||
20 | 70 | 70.52 |
Table 2 Calculation results under different fault locations
故障类型 | Rf/Ω | ltrue/km | lcal/km | |||
AG | 20 | 10 | 10.34 | |||
20 | 40 | 40.27 | ||||
20 | 70 | 70.33 | ||||
BC | 20 | 10 | 10.53 | |||
20 | 40 | 40.39 | ||||
20 | 70 | 70.41 | ||||
BCG | 20 | 10 | 10.61 | |||
20 | 40 | 40.65 | ||||
20 | 70 | 70.52 |
故障类型 | Rf/Ω | ltrue/km | lcal/km | |||
AG | 75 | 80 | 80.76 | |||
125 | 80 | 81.12 | ||||
175 | 80 | 81.24 | ||||
BC | 75 | 80 | 78.57 | |||
125 | 80 | 80.75 | ||||
175 | 80 | 81.12 | ||||
BCG | 75 | 80 | 80.61 | |||
125 | 80 | 80.93 | ||||
175 | 80 | 81.11 |
Table 3 Calculation results under different fault resistances
故障类型 | Rf/Ω | ltrue/km | lcal/km | |||
AG | 75 | 80 | 80.76 | |||
125 | 80 | 81.12 | ||||
175 | 80 | 81.24 | ||||
BC | 75 | 80 | 78.57 | |||
125 | 80 | 80.75 | ||||
175 | 80 | 81.12 | ||||
BCG | 75 | 80 | 80.61 | |||
125 | 80 | 80.93 | ||||
175 | 80 | 81.11 |
光伏场站容量/MW | 故障类型 | ltrue/km | lcal/km | 保护动作 | ||||
20 | AG | 30 | 30.12 | √ | ||||
60 | 60.21 | √ | ||||||
85 | 85.27 | √ | ||||||
BC | 30 | 30.17 | √ | |||||
60 | 60.34 | √ | ||||||
85 | 85.38 | √ | ||||||
BCG | 30 | 30.24 | √ | |||||
60 | 60.41 | √ | ||||||
85 | 85.54 | √ | ||||||
40 | AG | 30 | 30.10 | √ | ||||
60 | 60.20 | √ | ||||||
85 | 85.29 | √ | ||||||
BC | 30 | 30.14 | √ | |||||
60 | 60.31 | √ | ||||||
85 | 85.34 | √ | ||||||
BCG | 30 | 30.19 | √ | |||||
60 | 60.39 | √ | ||||||
85 | 85.48 | √ |
Table 4 Calculation results of different photovoltaic capacity
光伏场站容量/MW | 故障类型 | ltrue/km | lcal/km | 保护动作 | ||||
20 | AG | 30 | 30.12 | √ | ||||
60 | 60.21 | √ | ||||||
85 | 85.27 | √ | ||||||
BC | 30 | 30.17 | √ | |||||
60 | 60.34 | √ | ||||||
85 | 85.38 | √ | ||||||
BCG | 30 | 30.24 | √ | |||||
60 | 60.41 | √ | ||||||
85 | 85.54 | √ | ||||||
40 | AG | 30 | 30.10 | √ | ||||
60 | 60.20 | √ | ||||||
85 | 85.29 | √ | ||||||
BC | 30 | 30.14 | √ | |||||
60 | 60.31 | √ | ||||||
85 | 85.34 | √ | ||||||
BCG | 30 | 30.19 | √ | |||||
60 | 60.39 | √ | ||||||
85 | 85.48 | √ |
故障类型 | Rf/Ω | 文献[ | 本文 | |||
lcal/km | lcal/km | |||||
AG | 20 | 82.12 | 80.76 | |||
40 | 83.27 | 81.12 | ||||
60 | 83.96 | 81.24 | ||||
BC | 20 | 83.17 | 78.57 | |||
40 | 83.73 | 80.75 | ||||
60 | 84.05 | 81.02 | ||||
BCG | 20 | 82.49 | 80.61 | |||
40 | 84.65 | 80.93 | ||||
60 | 84.87 | 81.11 |
Table 5 Comparison between methods in [15] and in this paper
故障类型 | Rf/Ω | 文献[ | 本文 | |||
lcal/km | lcal/km | |||||
AG | 20 | 82.12 | 80.76 | |||
40 | 83.27 | 81.12 | ||||
60 | 83.96 | 81.24 | ||||
BC | 20 | 83.17 | 78.57 | |||
40 | 83.73 | 80.75 | ||||
60 | 84.05 | 81.02 | ||||
BCG | 20 | 82.49 | 80.61 | |||
40 | 84.65 | 80.93 | ||||
60 | 84.87 | 81.11 |
1 | 李铁成, 范辉, 臧谦, 等. 基于5G通信的有源配电网多点同步保护方案[J]. 中国电力, 2023, 56 (11): 113- 120. |
LI Tiecheng, FAN Hui, ZANG Qian, et al. Multi-point synchronous protection scheme for active distribution network based on 5G communication[J]. Electric Power, 2023, 56 (11): 113- 120. | |
2 | 金恩淑, 刘丹阳, 夏国武. 特高压换流变压器差动保护适用性分析及其改进方法[J]. 东北电力大学学报, 2023, 43 (1): 20- 28. |
JIN Enshu, LIU Danyang, XIA Guowu. Applicability analysis and improvement method of differential protection of converter transformer in UHVDC system[J]. Journal of Northeast Electric Power University, 2023, 43 (1): 20- 28. | |
3 | 罗美玲, 李紫肖, 郑涛, 等. 基于模糊多判据融合的单端暂态量保护新方案[J]. 中国电力, 2024, 57 (3): 60- 72. |
LUO Meiling, LI Zixiao, ZHENG Tao, et al. Single terminal transient protection scheme based on fuzzy multi-criteria fusion[J]. Electric Power, 2024, 57 (3): 60- 72. | |
4 | 李润培, 桂林, 吴龙, 等. 励磁方式差异对RAM发电机过流保护整定的影响[J]. 中国电力, 2023, 56 (3): 86- 93. |
LI Runpei, GUI Lin, WU Long, et al. Influence of excitation mode difference on RAM generator overcurrent protection setting[J]. Electric Power, 2023, 56 (3): 86- 93. | |
5 | 闫桂红, 李丹丹, 刘小恺, 等. 分布式调相机对大规模新能源直流送端系统的稳定特性影响[J]. 内蒙古电力技术, 2024, 42 (4): 80- 86. |
YAN Guihong, LI Dandan, LIU Xiaokai, et al. Impact of distributed regulator on stability characteristics of large-scale new energy DC sending-end system[J]. Inner Mongolia Electric Power, 2024, 42 (4): 80- 86. | |
6 | 李吉峰, 唐克, 王孜航, 等. 计及多源互补特性的新型电力系统分布式电源承载能力评估[J]. 东北电力大学学报, 2023, 43 (1): 62- 68. |
LI Jifeng, TANG Ke, WANG Zihang, et al. Assessment of distributed power generations bearing capacity of modern power systems with multi-sources complementary characteristics[J]. Journal of Northeast Electric Power University, 2023, 43 (1): 62- 68. | |
7 | 李会新, 陈祥文, 金明亮, 等. 常规直流逆变站交流送出线路距离保护适应性分析与对策[J]. 中国电力, 2024, 57 (2): 115- 126. |
LI Huixin, CHEN Xiangwen, JIN Mingliang, et al. Adaptability analysis and countermeasures for distance protection of AC transmission lines connected LCC-HVDC inverter station[J]. Electric Power, 2024, 57 (2): 115- 126. | |
8 |
曾翔, 文明浩, 钱堃, 等. 逆变型分布式电源接入对接地距离保护的影响与对策[J]. 智慧电力, 2023, 51 (1): 46- 53.
DOI |
ZENG Xiang, WEN Minghao, QIAN Kun, et al. Influence of inverter-interfaced distributed generation integration on grounding distance protection and its strategies[J]. Smart Power, 2023, 51 (1): 46- 53.
DOI |
|
9 |
李彦宾, 贾科, 毕天姝, 等. 逆变型电源对距离保护的影响机理分析[J]. 电力系统保护与控制, 2018, 46 (16): 54- 59.
DOI |
LI Yanbin, JIA Ke, BI Tianshu, et al. Impact of inverter-interfaced renewable energy generators on distance protection[J]. Power System Protection and Control, 2018, 46 (16): 54- 59.
DOI |
|
10 |
黄少锋, 曹凯, 罗澜. 一种消除过渡电阻影响的阻抗测量方法[J]. 电力系统自动化, 2013, 37 (23): 108- 113.
DOI |
HUANG Shaofeng, CAO Kai, LUO Shan. A method of impedance measurement to eliminate influence of transition resistance[J]. Automation of Electric Power Systems, 2013, 37 (23): 108- 113.
DOI |
|
11 |
FANG Yu, JIA Ke, YANG Zhe, et al. Impact of inverter-interfaced renewable energy generators on distance protection and an improved scheme[J]. IEEE Transactions on Industrial Electronics, 2019, 66 (9): 7078- 7088.
DOI |
12 |
HOOSHYAR A, AZZOUZ M A, El-SAADANY E F. Distance protection of lines emanating from full-scale converter interfaced renewable energy power plants—Part II: Solution Description and Evaluation[J]. IEEE Transactions on Power Delivery, 2015, 30 (4): 1781- 1791.
DOI |
13 | 马伟, 黄晓波, 吴旻昊, 等. 一种抗过渡电阻的阻抗测量改进方案[J]. 电网技术, 2020, 44 (3): 1134- 1139. |
MA Wei, HUANG Xiaobo, WU Minghao, et al. An improved scheme of impedance measurement against transition resistance[J]. Power System Technology, 2020, 44 (3): 1134- 1139. | |
14 |
桂小智, 宋国兵, 常鹏, 等. 适用于新能源并网系统的距离保护方法[J]. 电力工程技术, 2023, 42 (3): 250- 257.
DOI |
GUI Xiaozhi, SONG Guobing, CHANG Peng, et al. Distance protection method applicable to renewable energy grid-connected systems[J]. Jiangsu Electrical Engineering, 2023, 42 (3): 250- 257.
DOI |
|
15 | 季亮, 张林楠, 姜恩宇, 等. 提升距离保护适应性的新能源主动故障控制研究[J]. 太阳能学报, 2022, 43 (7): 22- 29. |
JI Liang, ZHANG Linnan, JIANG Enyu, et al. Research on new energy active fault control to improve adaptability of distance protection[J]. Acta Energiae Solaris Sinica, 2022, 43 (7): 22- 29. | |
16 |
BANAIEMOQADAM A, HOOSHYAR A, AZZOUZ M A. A comprehensive dual current control scheme for inverter based resources to enable correct operation of protective relays[J]. IEEE Transactions on Power Delivery, 2021, 36 (5): 2715- 2729.
DOI |
17 | 郑涛, 王可坛, 刘校销, 等. 可消除过渡电阻影响的单相接地距离保护研究[J]. 电网技术, 2017, 41 (12): 4045- 4055. |
ZHENG Tao, WANG Ketan, LIU Xiaoxiao, et al. Research on single phase grounding distance protection against transition resistance[J]. Power System Technology, 2017, 41 (12): 4045- 4055. | |
18 | 王峰渊, 方愉冬, 赵萍, 等. 一种适用于光伏场站送出线的自适应距离保护改进方案[J]. 电力系统保护与控制, 2019, 47 (20): 127- 134. |
WANG Fengyuan, FANG Yudong, ZHAO Ping, et al. An improved adaptive distance protection scheme for the outgoing line of PV power station[J]. Power System Protection and Control, 2019, 47 (20): 127- 134. | |
19 | 李党, 白浩, 霍建彬, 等. 基于零序导纳的小电阻接地系统馈线高阻接地故障保护方法[J]. 南方电网技术, 2023, 17 (7): 95- 102, 114. |
LI Dang, BAI Hao, HUO Jianbin, et al. High-resistance ground fault protection method based on zero-Sequence admittance in low-resistance ground systems[J]. Southern Power System Technology, 2023, 17 (7): 95- 102, 114. | |
20 |
CHANG Peng, SONG Guobing, HOU Junjie, et al. A single-ended fault location method for grid-connected converter system based on control and protection coordination[J]. IEEE Transactions on Power Delivery, 2022, 37 (4): 3071- 3081.
DOI |
21 | 晁晨栩, 郑晓冬, 邰能灵, 等. 针对新能源场站送出线两相短路的负序阻抗重构距离保护[J]. 电力系统自动化, 2023, 47 (22): 101- 109. |
CHAO Chenxu, ZHENG Xiaodong, TAI Nengling, et al. Distance protection based on negative-sequence impedance reconstruction for phase-to-phase short circuit of renewable power plant transmission lines[J]. Automation of Electric Power Systems, 2023, 47 (22): 101- 109. | |
22 | 李永凯, 雷勇, 苏诗慧, 等. 混合储能提高光伏低电压穿越控制策略的研究[J]. 电测与仪表, 2021, 58 (5): 1- 7. |
LI Yongkai, LEI Yong, SU Shihui, et al. Research on the control strategy of improving PV low voltage ride through by hybrid energy storage device[J]. Electrical Measurement & Instrumentation, 2021, 58 (5): 1- 7. | |
23 | 王诗雯, 刘飞, 刘沁怡, 等. 不对称故障下两级式光伏并网系统低电压穿越控制[J]. 电网技术, 2023, 47 (1): 91- 102. |
WANG Shiwen, LIU Fei, LIU Qinyi, et al. Low-voltage riding-through control strategy for two-staged grid-connected photovoltaic system under asymmetrical faults[J]. Power System Technology, 2023, 47 (1): 91- 102. | |
24 | 刘耀远, 曾成碧, 李庭敏, 等. 基于超级电容的光伏并网低电压穿越控制策略研究[J]. 电力系统保护与控制, 2014, 42 (13): 77- 82. |
LIU Yaoyuan, ZENG Chengbi, LI Tingmin, et al. Study on low-voltage ride through control strategy of photovoltaic system based on super-capacitor[J]. Power System Protection and Control, 2014, 42 (13): 77- 82. | |
25 |
钱乙卫, 田浩, 刘财华, 等. 考虑概率分布的分布式光伏无功下垂控制策略[J]. 发电技术, 2024, 45 (2): 273- 281.
DOI |
QIAN Yiwei, TIAN Hao, LIU Caihua, et al. Droop control strategy of distributed photovoltaic reactive power considering probability distribution[J]. Power Generation Technology, 2024, 45 (2): 273- 281.
DOI |
|
26 | 吴岱岳. 基于超导储能的光伏并网低电压穿越策略[D]. 湖南大学, 2021. |
WU Daiyuan. Photovoltaic grid-connected low voltage ride through strategy based on superconducting energy storage[D]. Hunan university, 2021. | |
27 | 刘建勋, 李凤婷, 解超, 等. 工频变化量距离保护在交直流混联系统中的动作特性分析及改进措施[J]. 电力科学与技术学报, 2023, 38 (1): 88- 96. |
LIU Jianxun, LI Fengting, XIE Chao, et al. Action characteristic analysis and improvement measures of the distance protection using power frequency variable components in AC/DC hybrid system[J]. Journal of Electric Power Science and Technology, 2023, 38 (1): 88- 96. | |
28 | 晁晨栩, 郑晓冬, 高飘, 等. 针对光伏场站送出线路不对称短路故障的自适应距离保护原理[J]. 中国电机工程学报, 2022, 42 (18): 6681- 6693. |
CHAO Chenxu, ZHENG Xiaodong, GAO Piao, et al. Adaptive distance protection for transmission line of photovoltaic station during asymmetric short circuit[J]. Proceedings of the CSEE, 2022, 42 (18): 6681- 6693. | |
29 | XU Kehan, ZHANG Zhe, LAI Qinghua, et al. Fault phase selection method applied to tie line of renewable energy power stations[J]. IET Generation, Transmission & Distribution, 2020, 14 (13): 2549- 2557. |
30 | 程梦帆. 几类非线性方程组的求解[D]. 中国矿业大学, 2023. |
CHEN Mengfan. The solution of several kinds of nonlinear equations[D]. China University of Mining and Technology, 2023. |
[1] | Zhiwei SONG, Xinbo HUANG, Chao JI, Fan ZHANG, Ye ZHANG. Transmission Line Connection Fittings and Corrosion Detection Method Based on PCSA-YOLOv7 Former [J]. Electric Power, 2024, 57(6): 141-152. |
[2] | Chuanqi WANG, Liwen WU, Zhibin DENG, Weifeng DENG, Bin YANG. Review of Icing Prediction Model and Algorithm for Overhead Transmission Lines Considering Time Cumulative Effects [J]. Electric Power, 2024, 57(6): 153-164, 234. |
[3] | Yuming YE, Qiqi QIAN, Zhengdong WAN, Jigang ZHANG. Prediction of Transmission Line Cost Based on Embedding Method and Ensemble Learning [J]. Electric Power, 2024, 57(5): 251-260. |
[4] | Hanru LI, Zhijian LIU, Liyong LAI, Lingyu HUANG, Shiyin DING, Ren LIU, Bo TANG. Current-carrying Capacity Probability Prediction of Overhead Transmission Line Considering Conditional Distribution Prediction Errors of Meteorological Parameters [J]. Electric Power, 2024, 57(2): 103-114. |
[5] | Huixin LI, Xiangwen CHEN, Mingliang JIN, Yang LIU, Haiyang XU. Adaptability Analysis and Countermeasures for Distance Protection of AC Transmission Lines Connected LCC-HVDC Inverter Station [J]. Electric Power, 2024, 57(2): 115-126. |
[6] | Mingyuan WAN, Xin REN, Du WANG, Yafei JIN, Zhigang WANG, Tingju WANG, Changhong YANG, Haokun LIU. Study of Dynamic Characteristics of 100 MW Cascade S-CO2 Cycle [J]. Electric Power, 2024, 57(12): 169-177. |
[7] | Shuang LIANG, She WANG, hui XU. Development Achievements and Policy Suggestions of China's West to East Power Transmission for 40 Years [J]. Electric Power, 2024, 57(11): 88-93. |
[8] | Nuo CHENG, Dacai CHEN, Xue CHEN, Xiaofei RUAN, Shuqing WEI, Zheyu HAN. An Optimized Scheme for Active Distribution Network Current Speed Protection Setting Considering Tie Switch Operation [J]. Electric Power, 2024, 57(10): 90-101. |
[9] | Baocheng FENG, Zhen JIN, Wei HOU, Guangfu XU. Research and Application of Control Strategy Optimization for Regional Standby Automatic Switching System of Petal-Type Distribution Network [J]. Electric Power, 2024, 57(1): 244-254. |
[10] | SHI Wenzhe, LI Bingjie, YOU Peipei, ZHANG Ling. Optimization Strategy of Building Energy System Based on Deep Reinforcement Learning [J]. Electric Power, 2023, 56(6): 114-122. |
[11] | ZHOU Wenjun, CAO Yi, LI Jie, JIN Tao, CHEN Wenjian, ZHOU Xia. Reactive Voltage Emergency Control Strategy of Wind-Thermal-Bundled DC Transmission System Considering Wind Farm Regulation Margin [J]. Electric Power, 2023, 56(4): 77-87. |
[12] | LIU Liantao, LIU Fei, JI Ping, LIN Weifang, ZHANG Xiangcheng, TIAN Xu, GAO Fei. Research on Optimal Control Strategy of Energy Storage for Improving New Energy Consumption [J]. Electric Power, 2023, 56(3): 137-143. |
[13] | ZHANG Yemao, LI Ni, ZHOU Cuijuan, LU Haonan. Analysis of Radio Interference Measurement Data for 750 kV AC Transmission Lines at High Altitude [J]. Electric Power, 2023, 56(2): 77-85. |
[14] | Li LI, Xin HUANG, Tianyuan XU, Yue CHEN, Qiuyu LU, Yinguo YANG, Yang LIU, Yu ZHU, Gengfeng LI, Chengcheng SHAO. Flexible Control Device Configuration Planning for Transmission Network Resilience Enhancement [J]. Electric Power, 2023, 56(12): 113-126. |
[15] | LI Yongsheng, YANG Jialun, ZHENG Weigang, LIU Bin, GAO Zhengxu. Conductor Galloping Distribution Map of Liaoning Province Developed with Specific Return Period [J]. Electric Power, 2022, 55(8): 129-134. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||