Electric Power ›› 2024, Vol. 57 ›› Issue (5): 251-260.DOI: 10.11930/j.issn.1004-9649.202303125
• Technology and Economics • Previous Articles
					
													Yuming YE1(
), Qiqi QIAN1(
), Zhengdong WAN2(
), Jigang ZHANG2(
)
												  
						
						
						
					
				
Received:2023-03-29
															
							
															
							
																	Accepted:2023-06-27
															
							
																	Online:2024-05-23
															
							
							
																	Published:2024-05-28
															
							
						Supported by:Yuming YE, Qiqi QIAN, Zhengdong WAN, Jigang ZHANG. Prediction of Transmission Line Cost Based on Embedding Method and Ensemble Learning[J]. Electric Power, 2024, 57(5): 251-260.
| 特征 分类  | 特征名称 | 特征 数量  | ||
| 内部 | 电压等级、地区、风速、覆冰、海拔、回路数、地形、导线截面、分裂数、转角塔比例、地线根数、地线型号、导线型式、单回长、双回长、四回长、折单回全长、杆塔基数、单位塔材量、单位钢材量、单位导线量、是否光纤架空地线(OPGW) | 22 | ||
| 外部 | 生产者价格指数(PPI)、消费者物价指数(CPI)、塔材总价、塔材单价、导线价格、导线单价、钢材总价、钢材单价 | 8 | 
Table 1 Characteristics of transmission line project cost data
| 特征 分类  | 特征名称 | 特征 数量  | ||
| 内部 | 电压等级、地区、风速、覆冰、海拔、回路数、地形、导线截面、分裂数、转角塔比例、地线根数、地线型号、导线型式、单回长、双回长、四回长、折单回全长、杆塔基数、单位塔材量、单位钢材量、单位导线量、是否光纤架空地线(OPGW) | 22 | ||
| 外部 | 生产者价格指数(PPI)、消费者物价指数(CPI)、塔材总价、塔材单价、导线价格、导线单价、钢材总价、钢材单价 | 8 | 
| 项目 编号  | 地区编号 | 设计风速/ (m·s–1)  | 电压等级/ kV  | 回路数 | 导线截面/ mm2  | 分裂数 | 转角塔 比例/%  | ··· | 折单回 全长/km  | 单位造价/ (万元·km–1)  | ||||||||||
| 1 | 1 | 29.0 | 500 | 双回路 | 720 | 4 | 40.00 | ··· | 8.05 | 418.50 | ||||||||||
| 2 | 1 | 0 | 220 | 双回路 | 630 | 2 | 0 | ··· | 0.56 | 565.71 | ||||||||||
| 3 | 1 | 0 | 220 | 双回路 | 630 | 2 | 35.00 | ··· | 21.14 | 365.47 | ||||||||||
| 4 | 2 | 27.0 | 220 | 单回路 | 630 | 2 | 36.00 | ··· | 30.23 | 147.59 | ||||||||||
| 5 | 2 | 23.5 | 220 | 单回路 | 630 | 2 | 33.00 | ··· | 31.60 | 164.68 | ||||||||||
| ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ||||||||||
| 964 | 2 | 23.5 | 220 | 单回路 | 400 | 2 | 21.09 | ··· | 42.85 | 119.24 | ||||||||||
| 965 | 2 | 23.5 | 220 | 单回路 | 400 | 2 | 29.47 | ··· | 37.62 | 103.78 | 
Table 2 Example of transmission line project data
| 项目 编号  | 地区编号 | 设计风速/ (m·s–1)  | 电压等级/ kV  | 回路数 | 导线截面/ mm2  | 分裂数 | 转角塔 比例/%  | ··· | 折单回 全长/km  | 单位造价/ (万元·km–1)  | ||||||||||
| 1 | 1 | 29.0 | 500 | 双回路 | 720 | 4 | 40.00 | ··· | 8.05 | 418.50 | ||||||||||
| 2 | 1 | 0 | 220 | 双回路 | 630 | 2 | 0 | ··· | 0.56 | 565.71 | ||||||||||
| 3 | 1 | 0 | 220 | 双回路 | 630 | 2 | 35.00 | ··· | 21.14 | 365.47 | ||||||||||
| 4 | 2 | 27.0 | 220 | 单回路 | 630 | 2 | 36.00 | ··· | 30.23 | 147.59 | ||||||||||
| 5 | 2 | 23.5 | 220 | 单回路 | 630 | 2 | 33.00 | ··· | 31.60 | 164.68 | ||||||||||
| ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ||||||||||
| 964 | 2 | 23.5 | 220 | 单回路 | 400 | 2 | 21.09 | ··· | 42.85 | 119.24 | ||||||||||
| 965 | 2 | 23.5 | 220 | 单回路 | 400 | 2 | 29.47 | ··· | 37.62 | 103.78 | 
| 序号 | 真实值/(万元·km–1) | 预测值/(万元·km–1) | 误差/% | |||
| 1 | 90.38 | 89.66 | 0.79 | |||
| 2 | 151.34 | 149.59 | 1.15 | |||
| 3 | 155.25 | 153.56 | 1.08 | |||
| 4 | 93.21 | 91.75 | 1.57 | |||
| 5 | 162.40 | 158.85 | 2.19 | |||
| 6 | 134.75 | 140.63 | 4.43 | 
Table 3 Examples of forecast results
| 序号 | 真实值/(万元·km–1) | 预测值/(万元·km–1) | 误差/% | |||
| 1 | 90.38 | 89.66 | 0.79 | |||
| 2 | 151.34 | 149.59 | 1.15 | |||
| 3 | 155.25 | 153.56 | 1.08 | |||
| 4 | 93.21 | 91.75 | 1.57 | |||
| 5 | 162.40 | 158.85 | 2.19 | |||
| 6 | 134.75 | 140.63 | 4.43 | 
| 方法 | MAPE/% | RMSE | ||
| XGBoost | 7.25 | 15.56 | ||
| 随机森林 | 8.03 | 17.42 | ||
| SVM | 8.89 | 18.70 | ||
| ELM | 12.35 | 22.83 | ||
| BP神经网络 | 15.64 | 28.71 | ||
| 本文方法 | 3.91 | 8.39 | 
Table 4 Comparison of prediction results of different methods
| 方法 | MAPE/% | RMSE | ||
| XGBoost | 7.25 | 15.56 | ||
| 随机森林 | 8.03 | 17.42 | ||
| SVM | 8.89 | 18.70 | ||
| ELM | 12.35 | 22.83 | ||
| BP神经网络 | 15.64 | 28.71 | ||
| 本文方法 | 3.91 | 8.39 | 
| 1 | 涂开开. 新疆110 kV架空输电线路工程造价差异动因研究[D]. 北京: 华北电力大学, 2022. | 
| TU Kaikai. Study on the cost difference of Xinjiang 110 kV overhead transmission line project[D]. Beijing: North China Electric Power University, 2022. | |
| 2 |  
											卢艳超, 郑燕, 赵彪. 输变电工程外部环境影响分析[J]. 中国电力, 2012, 45 (10): 100- 103. 
																							 DOI  | 
										
|  
											LU Yanchao, ZHENG Yan, ZHAO Biao. The external environment influence analysis of power transmission project based on PEST model[J]. Electric Power, 2012, 45 (10): 100- 103. 
																							 DOI  | 
										|
| 3 | 丁政中, 彭露苇. 基于MK-TESM法的输变电工程造价数据预测方法[J]. 沈阳工业大学学报, 2021, 43 (2): 126- 131. | 
| DING Zhengzhong, PENG Luwei. Prediction method for cost data of power transmission and transformation project based on MK-TESM method[J]. Journal of Shenyang University of Technology, 2021, 43 (2): 126- 131. | |
| 4 | 张书研. 基于全生命周期理论的电网工程造价分析方法与应用[D]. 杭州: 浙江大学, 2022. | 
| ZHANG Shuyan. Power grid project cost analysis method and application based on life cycle theory[D]. Hangzhou: Zhejiang University, 2022. | |
| 5 | 乔慧婷, 文上勇, 黄琰. 电网输电工程项目数据插补及造价预测融合模型[J]. 沈阳工业大学学报, 2021, 43 (5): 481- 486. | 
| QIAO Huiting, WEN Shangyong, HUANG Yan. Data interpolation and cost prediction fusion model for power grid transmission project[J]. Journal of Shenyang University of Technology, 2021, 43 (5): 481- 486. | |
| 6 | 吴美琼. 电网工程设备材料价格影响因素分析与预测模型研究[D]. 北京: 华北电力大学, 2018. | 
| WU Meiqiong. Research on influencing factors and forecasting models of equipment price in power grid project[D]. Beijing: North China Electric Power University, 2018. | |
| 7 | 武小琳, 栾凌, 潘连武, 等. 基于LM-CNN的输变电工程造价自动计算模型[J]. 中国电力, 2023, 56 (2): 157- 163. | 
| WU Xiaolin, LUAN Ling, PAN Lianwu, et al. LM-CNN-based automatic cost calculation model for power transmission and transformation projects[J]. Electric Power, 2023, 56 (2): 157- 163. | |
| 8 | 舒隽, 甘磊. 极限学习机方法在电力线路建设成本估算中的应用研究[J]. 现代电力, 2011, 28 (4): 78- 83. | 
| SHU Jun, GAN Lei. Research on cost estimation of power lines construction projects based on extreme learning machine method[J]. Modern Electric Power, 2011, 28 (4): 78- 83. | |
| 9 | 王宁宁, 王飞, 尹彦涛, 等. 基于支持向量机的变电工程造价预测研究[J]. 建筑经济, 2016, 37 (5): 48- 52. | 
| WANG Ningning, WANG Fei, YIN Yantao, et al. Research on cost predicting of power transformation projects based on SVM[J]. Construction Economy, 2016, 37 (5): 48- 52. | |
| 10 | 宋宗耘, 牛东晓, 肖鑫利, 等. 基于改进萤火虫算法优化SVM的变电工程造价预测[J]. 中国电力, 2017, 50 (3): 168- 173. | 
| SONG Zongyun, NIU Dongxiao, XIAO Xinli, et al. Substation engineering cost forecasting method based on modified firefly algorithm and support vector machine[J]. Electric Power, 2017, 50 (3): 168- 173. | |
| 11 | 卢文飞, 袁竞峰, 张嘉澍, 等. 基于机器学习算法的输电线路工程投资预测[J]. 科学技术与工程, 2022, 22 (17): 6992- 7001. | 
| LU Wenfei, YUAN Jingfeng, ZHANG Jiashu, et al. Transmission line project investment prediction based on machine learning algorithm[J]. Science Technology and Engineering, 2022, 22 (17): 6992- 7001. | |
| 12 | 俞敏, 王愿翔, 闫园, 等. 架空线路改造工程造价的组合预测方法[J]. 电力科学与技术学报, 2020, 35 (1): 24- 30. | 
| YU Min, WANG Yuanxiang, YAN Yuan, et al. A combinational forecasting method for predicting the cost of an overhead line reconstruction project[J]. Journal of Electric Power Science and Technology, 2020, 35 (1): 24- 30. | |
| 13 | 鲍海波, 吴阳晨, 张国应, 等. 基于特征加权Stacking集成学习的净负荷预测方法[J]. 电力建设, 2022, 43 (9): 104- 116. | 
| BAO Haibo, WU Yangchen, ZHANG Guoying, et al. Net load forecasting method based on feature-weighted stacking ensemble learning[J]. Electric Power Construction, 2022, 43 (9): 104- 116. | |
| 14 | 吴思婕, 王怀远. 基于集成学习的时间自适应电力系统暂态稳定评估方法[J]. 电力系统保护与控制, 2022, 50 (24): 112- 119. | 
| WU Sijie, WANG Huaiyuan. Transient stability assessment of power system with time-adaptive method based on ensemble learning[J]. Power System Protection and Control, 2022, 50 (24): 112- 119. | |
| 15 | 史佳琪, 张建华. 基于多模型融合Stacking集成学习方式的负荷预测方法[J]. 中国电机工程学报, 2019, 39 (14): 4032- 4042. | 
| SHI Jiaqi, ZHANG Jianhua. Load forecasting based on multi-model by stacking ensemble learning[J]. Proceedings of the CSEE, 2019, 39 (14): 4032- 4042. | |
| 16 | CHEN T Q, GUESTRIN C. XGBoost: a scalable tree boosting system[C]//Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. San Francisco California USA. ACM, 2016: 785–794. | 
| 17 | BIAU G, SCORNET E. A random forest guided tour[J]. TEST, 2016: 197–227. | 
| 18 | DHAL P, AZAD C. A comprehensive survey on feature selection in the various fields of machine learning[J]. Applied Intelligence, 2022, 52 (4): 4543- 4581. | 
| 19 | ZHANG R, NIE F P, LI X L, et al. Feature selection with multi-view data: a survey[J]. Information Fusion, 2019, 50, 158- 167. | 
| 20 | ZHOU H F, ZHANG J W, ZHOU Y Q, et al. A feature selection algorithm of decision tree based on feature weight[J]. Expert Systems with Applications, 2021, 164 113842. | 
| 21 | LIU Z G, YANG J L, WANG L, et al. A novel relation aware wrapper method for feature selection[J]. Pattern Recognition, 2023, 140 109566. | 
| 22 | 黄奇文, 李丽颖, 沈富可, 等. 基于集成特征选择的网络异常流量检测[J]. 华东师范大学学报(自然科学版), 2021, (6): 100- 111. | 
| HUANG Qiwen, LI Liying, SHEN Fuke, et al. Network anomaly traffic detection based on ensemble feature selection[J]. Journal of East China Normal University (Natural Science), 2021, (6): 100- 111. | |
| 23 | 李占山, 刘兆赓. 基于XGBoost的特征选择算法[J]. 通信学报, 2019, 40 (10): 101- 108. | 
| LI Zhanshan, LIU Zhaogeng. Feature selection algorithm based on XGBoost[J]. Journal on Communications, 2019, 40 (10): 101- 108. | |
| 24 | RAMRAJ S , UZIR N , SUNIL R , et al. Experimenting Xgboost algorithm for prediction and classification of different datasets[C]//National Conference on Recent Innovations in Software Engineering and Computer Technologies (NCRISECT) 2017. 2017. | 
| 25 | BREIMAN L. Random forests[J]. Machine Learning, 2001: 5–32. | 
| 26 |  
											CHERKASSKY V, MA Y Q. Practical selection of SVM parameters and noise estimation for SVM regression[J]. Neural Networks, 2004, 17 (1): 113- 126. 
																							 DOI  | 
										
| 27 | 徐睿, 梁循, 齐金山, 等. 极限学习机前沿进展与趋势[J]. 计算机学报, 2019, 42 (7): 1640- 1670. | 
| XU Rui, LIANG Xun, QI Jinshan, et al. Advances and trends in extreme learning machine[J]. Chinese Journal of Computers, 2019, 42 (7): 1640- 1670. | |
| 28 | 刘颖, 杨鹏飞, 张立军, 等. 前馈神经网络和循环神经网络的鲁棒性验证综述[J]. 软件学报, 2023, 34 (7): 3134- 3166. | 
| LIU Ying, YANG Pengfei, ZHANG Lijun, et al. Survey on robustness verification of feedforward neural networks and recurrent neural networks[J]. Journal of Software, 2023, 34 (7): 3134- 3166. | |
| 29 |  
											DIVINA F, GILSON A, GOMÉZ-VELA F, et al. Stacking ensemble learning for short-term electricity consumption forecasting[J]. Energies, 2018, 11 (4): 949. 
																							 DOI  | 
										
| [1] | MA Bingqing, LI Zhenxing. A New Pilot Protection for Transmission Lines Based on Overcurrent Limiting from Grid-Forming Power Sources [J]. Electric Power, 2025, 58(8): 164-175. | 
| [2] | FENG Xiaoping, CHEN Qidi, ZHAO Qingchun, WANG Xing, LI Bin, XIE Hua. Adaptability Analysis of Transmission Line Protection under the Control Strategy of Grid-Forming Energy Storage Converter [J]. Electric Power, 2025, 58(8): 176-184. | 
| [3] | CAO Haiou, HU Xiaoli, DAI Wei, HU Jiatong, LI Ping, ZHANG Yue. A Power Grid Fault Diagnosis Method of Online Monitoring System for Relay Protection under Multiple Dimensionality Reduction [J]. Electric Power, 2025, 58(7): 128-136. | 
| [4] | Zhiwei SONG, Xinbo HUANG, Chao JI, Fan ZHANG, Ye ZHANG. Transmission Line Connection Fittings and Corrosion Detection Method Based on PCSA-YOLOv7 Former [J]. Electric Power, 2024, 57(6): 141-152. | 
| [5] | Chuanqi WANG, Liwen WU, Zhibin DENG, Weifeng DENG, Bin YANG. Review of Icing Prediction Model and Algorithm for Overhead Transmission Lines Considering Time Cumulative Effects [J]. Electric Power, 2024, 57(6): 153-164, 234. | 
| [6] | Hanru LI, Zhijian LIU, Liyong LAI, Lingyu HUANG, Shiyin DING, Ren LIU, Bo TANG. Current-carrying Capacity Probability Prediction of Overhead Transmission Line Considering Conditional Distribution Prediction Errors of Meteorological Parameters [J]. Electric Power, 2024, 57(2): 103-114. | 
| [7] | Huixin LI, Xiangwen CHEN, Mingliang JIN, Yang LIU, Haiyang XU. Adaptability Analysis and Countermeasures for Distance Protection of AC Transmission Lines Connected LCC-HVDC Inverter Station [J]. Electric Power, 2024, 57(2): 115-126. | 
| [8] | Shuang LIANG, She WANG, hui XU. Development Achievements and Policy Suggestions of China's West to East Power Transmission for 40 Years [J]. Electric Power, 2024, 57(11): 88-93. | 
| [9] | Zhihui DAI, Meiyuan LIU, Shuqing WEI, Weiping ZHU, Wenzhuo WANG. Distance Protection for Outgoing Line of Photovoltaic Station Based on Superconducting Magnetic Energy Storage [J]. Electric Power, 2024, 57(10): 102-114. | 
| [10] | YANG Xiaofeng, FANG Yihang, ZHAO Pengzhen, WANG Chengmin, XIE Ning. State Recognition of Wind Turbines Based on K-means and BPNN [J]. Electric Power, 2023, 56(6): 158-166,175. | 
| [11] | ZHANG Yemao, LI Ni, ZHOU Cuijuan, LU Haonan. Analysis of Radio Interference Measurement Data for 750 kV AC Transmission Lines at High Altitude [J]. Electric Power, 2023, 56(2): 77-85. | 
| [12] | Li LI, Xin HUANG, Tianyuan XU, Yue CHEN, Qiuyu LU, Yinguo YANG, Yang LIU, Yu ZHU, Gengfeng LI, Chengcheng SHAO. Flexible Control Device Configuration Planning for Transmission Network Resilience Enhancement [J]. Electric Power, 2023, 56(12): 113-126. | 
| [13] | LI Yongsheng, YANG Jialun, ZHENG Weigang, LIU Bin, GAO Zhengxu. Conductor Galloping Distribution Map of Liaoning Province Developed with Specific Return Period [J]. Electric Power, 2022, 55(8): 129-134. | 
| [14] | HU Jing, DENG Ying, JIANG Xingliang, ZENG Yunrui. Feature Extraction and Identification Method of Ice-covered Saddle Mircotopography for Transmission Lines [J]. Electric Power, 2022, 55(8): 135-142. | 
| [15] | MA Aiqing, WANG Jie, BI Yongxiang. Influence of 500 kV AC Lines on Safety Protection of Live Working Personnel in Parallel ±800 kV DC Lines [J]. Electric Power, 2022, 55(6): 128-136. | 
| Viewed | ||||||
| 
										Full text | 
									
										 | 
								|||||
| 
										Abstract | 
									
										 | 
								|||||
