Electric Power ›› 2025, Vol. 58 ›› Issue (8): 164-175.DOI: 10.11930/j.issn.1004-9649.202501046
• Grid-Forming Technologies • Previous Articles Next Articles
					
													MA Bingqing1(
), LI Zhenxing1,2(
)
												  
						
						
						
					
				
Received:2025-01-15
															
							
															
							
															
							
																	Online:2025-08-26
															
							
							
																	Published:2025-08-28
															
							
						Supported by:MA Bingqing, LI Zhenxing. A New Pilot Protection for Transmission Lines Based on Overcurrent Limiting from Grid-Forming Power Sources[J]. Electric Power, 2025, 58(8): 164-175.
| 模块名称 | 参数名称 | 数值 | ||
| 光伏场站 | 额定容量/MW | 200 | ||
| 直流电容/μF | ||||
| LCL滤波电感参数/μF,mF | 200/0.25 | |||
| LCL滤波电容参数/mH | 0.5 | |||
| 电流环PI参数 (p.u.) | 0.15/0.4 | |||
| 主变 | 额定容量/MW | 100 | ||
| 变比/kV | 220/35 | |||
| 联结方式 | YNd | |||
| 短路阻抗/% | 10 | |||
| 送出线路 | 正序电阻/(Ω/m) | 1.5 e-4 | ||
| 正序感抗/(Ω/m) | ||||
| 正序容抗/(MΩ*m) | ||||
| 负序电阻/(Ω/m) | 3.15 e-4 | |||
| 负序感抗/(Ω/m) | 
Table 1 Parameters of Simulation Model
| 模块名称 | 参数名称 | 数值 | ||
| 光伏场站 | 额定容量/MW | 200 | ||
| 直流电容/μF | ||||
| LCL滤波电感参数/μF,mF | 200/0.25 | |||
| LCL滤波电容参数/mH | 0.5 | |||
| 电流环PI参数 (p.u.) | 0.15/0.4 | |||
| 主变 | 额定容量/MW | 100 | ||
| 变比/kV | 220/35 | |||
| 联结方式 | YNd | |||
| 短路阻抗/% | 10 | |||
| 送出线路 | 正序电阻/(Ω/m) | 1.5 e-4 | ||
| 正序感抗/(Ω/m) | ||||
| 正序容抗/(MΩ*m) | ||||
| 负序电阻/(Ω/m) | 3.15 e-4 | |||
| 负序感抗/(Ω/m) | 
| 故障 位置  | 过渡电阻/Ω | 两侧余弦相似度计算值 | ||||||
| A相 | B相 | C相 | ||||||
| F1 | 10 | –1.000 0 | –1.000 0 | –1.000 0 | ||||
| 30 | –1.000 0 | –0.999 9 | –1.000 0 | |||||
| 60 | –1.000 0 | –0.903 8 | –1.000 0 | |||||
| 100 | –0.999 6 | –0.997 8 | –0.999 9 | |||||
| F2 | 10 | 0.999 9 | –1.000 0 | –1.000 0 | ||||
| 30 | 0.997 4 | –0.992 4 | –1.000 0 | |||||
| 60 | 0.979 4 | –0.992 8 | –1.000 0 | |||||
| 100 | 0.911 7 | –0.999 2 | –0.999 9 | |||||
| F3 | 10 | 0.999 3 | –0.999 9 | –1.000 0 | ||||
| 30 | 0.994 0 | –0.943 5 | –1.000 0 | |||||
| 60 | 0.994 0 | –0.943 5 | –1.000 0 | |||||
| 100 | 0.861 7 | –0.999 7 | –0.999 9 | |||||
| F4 | 10 | 0.998 4 | –0.935 2 | –1.000 0 | ||||
| 30 | 0.987 7 | –0.998 7 | –0.999 9 | |||||
| 60 | 0.926 0 | –0.999 7 | –0.999 9 | |||||
| 100 | 0.742 9 | –0.999 8 | –0.999 9 | |||||
| F5 | 10 | –1.000 0 | –0.999 6 | –0.999 9 | ||||
| 30 | –0.999 9 | –0.999 8 | –0.999 9 | |||||
| 60 | –0.999 9 | –0.999 9 | –0.999 8 | |||||
| 100 | –0.996 8 | –0.999 9 | –0.999 8 | |||||
Table 2 Protection performance under different transition resistance
| 故障 位置  | 过渡电阻/Ω | 两侧余弦相似度计算值 | ||||||
| A相 | B相 | C相 | ||||||
| F1 | 10 | –1.000 0 | –1.000 0 | –1.000 0 | ||||
| 30 | –1.000 0 | –0.999 9 | –1.000 0 | |||||
| 60 | –1.000 0 | –0.903 8 | –1.000 0 | |||||
| 100 | –0.999 6 | –0.997 8 | –0.999 9 | |||||
| F2 | 10 | 0.999 9 | –1.000 0 | –1.000 0 | ||||
| 30 | 0.997 4 | –0.992 4 | –1.000 0 | |||||
| 60 | 0.979 4 | –0.992 8 | –1.000 0 | |||||
| 100 | 0.911 7 | –0.999 2 | –0.999 9 | |||||
| F3 | 10 | 0.999 3 | –0.999 9 | –1.000 0 | ||||
| 30 | 0.994 0 | –0.943 5 | –1.000 0 | |||||
| 60 | 0.994 0 | –0.943 5 | –1.000 0 | |||||
| 100 | 0.861 7 | –0.999 7 | –0.999 9 | |||||
| F4 | 10 | 0.998 4 | –0.935 2 | –1.000 0 | ||||
| 30 | 0.987 7 | –0.998 7 | –0.999 9 | |||||
| 60 | 0.926 0 | –0.999 7 | –0.999 9 | |||||
| 100 | 0.742 9 | –0.999 8 | –0.999 9 | |||||
| F5 | 10 | –1.000 0 | –0.999 6 | –0.999 9 | ||||
| 30 | –0.999 9 | –0.999 8 | –0.999 9 | |||||
| 60 | –0.999 9 | –0.999 9 | –0.999 8 | |||||
| 100 | –0.996 8 | –0.999 9 | –0.999 8 | |||||
| 故障 位置  | 场站出力/ MW  | 两侧余弦相似度计算值 | ||||||
| A相 | B相 | C相 | ||||||
| F1 | 100 | –1.000 0 | –1.000 0 | –1.000 0 | ||||
| 50 | –1.000 0 | –1.000 0 | –1.000 0 | |||||
| 1 | –1.000 0 | –1.000 0 | –1.000 0 | |||||
| F2 | 100 | 1.000 0 | –1.000 0 | –1.000 0 | ||||
| 50 | 1.000 0 | –1.000 0 | –1.000 0 | |||||
| 1 | 0.998 9 | –1.000 0 | –1.000 0 | |||||
| F3 | 100 | 0.999 9 | –0.999 8 | –1.000 0 | ||||
| 50 | 0.999 4 | –1.000 0 | –1.000 0 | |||||
| 1 | 0.996 0 | –1.000 0 | –1.000 0 | |||||
| F4 | 100 | 0.999 7 | –0.998 2 | –1.000 0 | ||||
| 50 | 0.998 7 | –0.999 5 | –1.000 0 | |||||
| 1 | 0.992 2 | –0.999 8 | –1.000 0 | |||||
| F5 | 100 | –1.000 0 | –0.999 1 | –0.999 9 | ||||
| 50 | –1.000 0 | –0.933 8 | –1.000 0 | |||||
| 1 | –1.000 0 | –0.998 9 | –1.000 0 | |||||
Table 3 Protection performance under different output scenarios
| 故障 位置  | 场站出力/ MW  | 两侧余弦相似度计算值 | ||||||
| A相 | B相 | C相 | ||||||
| F1 | 100 | –1.000 0 | –1.000 0 | –1.000 0 | ||||
| 50 | –1.000 0 | –1.000 0 | –1.000 0 | |||||
| 1 | –1.000 0 | –1.000 0 | –1.000 0 | |||||
| F2 | 100 | 1.000 0 | –1.000 0 | –1.000 0 | ||||
| 50 | 1.000 0 | –1.000 0 | –1.000 0 | |||||
| 1 | 0.998 9 | –1.000 0 | –1.000 0 | |||||
| F3 | 100 | 0.999 9 | –0.999 8 | –1.000 0 | ||||
| 50 | 0.999 4 | –1.000 0 | –1.000 0 | |||||
| 1 | 0.996 0 | –1.000 0 | –1.000 0 | |||||
| F4 | 100 | 0.999 7 | –0.998 2 | –1.000 0 | ||||
| 50 | 0.998 7 | –0.999 5 | –1.000 0 | |||||
| 1 | 0.992 2 | –0.999 8 | –1.000 0 | |||||
| F5 | 100 | –1.000 0 | –0.999 1 | –0.999 9 | ||||
| 50 | –1.000 0 | –0.933 8 | –1.000 0 | |||||
| 1 | –1.000 0 | –0.998 9 | –1.000 0 | |||||
| 故障类型 | 信噪比/dB | 两侧余弦相似度计算值 | ||||||
| A相 | B相 | C相 | ||||||
| AG | 10 | 0.999 9 | –0.998 5 | –0.999 9 | ||||
| 20 | 0.999 6 | –0.983 6 | –0.998 4 | |||||
| 30 | 0.997 1 | –0.962 9 | –0.977 4 | |||||
| 40 | 0.989 7 | –0.911 3 | –0.944 2 | |||||
| AB | 10 | 0.995 4 | 0.989 5 | –0.998 1 | ||||
| 20 | 0.992 5 | 0.988 7 | –0.985 3 | |||||
| 30 | 0.950 4 | 0.971 2 | –0.906 9 | |||||
| 40 | 0.707 6 | 0.865 6 | –0.905 4 | |||||
| ABG | 10 | 0.994 5 | 0.734 1 | –0.998 7 | ||||
| 20 | 0.992 2 | 0.726 3 | –0.986 4 | |||||
| 30 | 0.981 4 | 0.677 9 | –0.977 8 | |||||
| 40 | 0.888 4 | 0.549 2 | –0.988 8 | |||||
| ABCG | 10 | 0.900 2 | 0.549 2 | 0.759 5 | ||||
| 20 | 0.989 3 | 0.743 6 | 0.972 2 | |||||
| 30 | 0.996 5 | 0.792 5 | 0.986 6 | |||||
| 40 | 0.997 7 | 0.814 3 | 0.987 5 | |||||
Table 4 Protection performance under different SNR scenarios for various fault types
| 故障类型 | 信噪比/dB | 两侧余弦相似度计算值 | ||||||
| A相 | B相 | C相 | ||||||
| AG | 10 | 0.999 9 | –0.998 5 | –0.999 9 | ||||
| 20 | 0.999 6 | –0.983 6 | –0.998 4 | |||||
| 30 | 0.997 1 | –0.962 9 | –0.977 4 | |||||
| 40 | 0.989 7 | –0.911 3 | –0.944 2 | |||||
| AB | 10 | 0.995 4 | 0.989 5 | –0.998 1 | ||||
| 20 | 0.992 5 | 0.988 7 | –0.985 3 | |||||
| 30 | 0.950 4 | 0.971 2 | –0.906 9 | |||||
| 40 | 0.707 6 | 0.865 6 | –0.905 4 | |||||
| ABG | 10 | 0.994 5 | 0.734 1 | –0.998 7 | ||||
| 20 | 0.992 2 | 0.726 3 | –0.986 4 | |||||
| 30 | 0.981 4 | 0.677 9 | –0.977 8 | |||||
| 40 | 0.888 4 | 0.549 2 | –0.988 8 | |||||
| ABCG | 10 | 0.900 2 | 0.549 2 | 0.759 5 | ||||
| 20 | 0.989 3 | 0.743 6 | 0.972 2 | |||||
| 30 | 0.996 5 | 0.792 5 | 0.986 6 | |||||
| 40 | 0.997 7 | 0.814 3 | 0.987 5 | |||||
| 故障类型 | 数据窗长/ ms  | 两侧余弦相似度计算值 | ||||||
| A相 | B相 | C相 | ||||||
| AG | 5 | 0.973 1 | –0.997 8 | –0.998 6 | ||||
| 10 | 0.999 9 | –0.999 8 | –1.000 0 | |||||
| 15 | 0.930 6 | –0.999 9 | –0.995 5 | |||||
| 20 | 0.997 4 | –0.979 3 | –0.999 9 | |||||
| AB | 5 | 0.992 1 | 0.998 3 | –0.997 2 | ||||
| 10 | 0.995 8 | 0.990 2 | –0.999 8 | |||||
| 15 | 0.965 1 | 0.925 2 | –0.999 8 | |||||
| 20 | 0.943 8 | 0.954 1 | –0.999 5 | |||||
| ABG | 5 | 0.996 4 | 0.609 4 | –0.998 2 | ||||
| 10 | 0.994 4 | 0.724 8 | –0.999 6 | |||||
| 15 | 0.982 4 | 0.844 7 | –0.999 9 | |||||
| 20 | 0.863 1 | 0.997 7 | –0.930 7 | |||||
| ABCG | 5 | 0.975 5 | 0.031 8 | 0.701 7 | ||||
| 10 | 0.997 8 | 0.812 4 | 0.987 6 | |||||
| 15 | 0.982 3 | 0.950 3 | 0.967 5 | |||||
| 20 | 0.996 5 | 0.994 7 | 0.970 8 | |||||
Table 5 Protection performance under different data window lengths
| 故障类型 | 数据窗长/ ms  | 两侧余弦相似度计算值 | ||||||
| A相 | B相 | C相 | ||||||
| AG | 5 | 0.973 1 | –0.997 8 | –0.998 6 | ||||
| 10 | 0.999 9 | –0.999 8 | –1.000 0 | |||||
| 15 | 0.930 6 | –0.999 9 | –0.995 5 | |||||
| 20 | 0.997 4 | –0.979 3 | –0.999 9 | |||||
| AB | 5 | 0.992 1 | 0.998 3 | –0.997 2 | ||||
| 10 | 0.995 8 | 0.990 2 | –0.999 8 | |||||
| 15 | 0.965 1 | 0.925 2 | –0.999 8 | |||||
| 20 | 0.943 8 | 0.954 1 | –0.999 5 | |||||
| ABG | 5 | 0.996 4 | 0.609 4 | –0.998 2 | ||||
| 10 | 0.994 4 | 0.724 8 | –0.999 6 | |||||
| 15 | 0.982 4 | 0.844 7 | –0.999 9 | |||||
| 20 | 0.863 1 | 0.997 7 | –0.930 7 | |||||
| ABCG | 5 | 0.975 5 | 0.031 8 | 0.701 7 | ||||
| 10 | 0.997 8 | 0.812 4 | 0.987 6 | |||||
| 15 | 0.982 3 | 0.950 3 | 0.967 5 | |||||
| 20 | 0.996 5 | 0.994 7 | 0.970 8 | |||||
| 故障类型 | 采样率/kHz | 两侧余弦相似度计算值 | ||||||
| A相 | B相 | C相 | ||||||
| AG | 1.0 | 0.999 9 | –0.999 8 | –1.000 0 | ||||
| 1.2 | 0.955 2 | –0.998 0 | –0.999 3 | |||||
| 4.0 | 1.000 0 | –0.999 6 | –0.999 9 | |||||
| 5.0 | 1.000 0 | –0.999 8 | –1.000 0 | |||||
| AB | 1.0 | 0.995 8 | 0.990 2 | –0.999 8 | ||||
| 1.2 | 0.798 2 | 0.740 1 | –0.998 2 | |||||
| 4.0 | 0.976 7 | 0.977 2 | –0.999 7 | |||||
| 5.0 | 0.985 8 | 0.981 9 | –0.999 7 | |||||
| ABG | 1.0 | 0.994 4 | 0.724 8 | –0.999 6 | ||||
| 1.2 | 0.953 4 | 0.602 7 | –0.998 1 | |||||
| 4.0 | 0.985 5 | 0.842 2 | –0.998 1 | |||||
| 5.0 | 0.989 9 | 0.806 5 | –0.999 1 | |||||
| ABCG | 1.0 | 0.825 4 | 0.833 2 | 0.772 5 | ||||
| 1.2 | 0.795 5 | 0.767 2 | 0.810 1 | |||||
| 4.0 | 0.988 3 | 0.883 7 | 0.868 9 | |||||
| 5.0 | 0.992 7 | |||||||
Table 6 Protection performance under different sampling rate scenarios
| 故障类型 | 采样率/kHz | 两侧余弦相似度计算值 | ||||||
| A相 | B相 | C相 | ||||||
| AG | 1.0 | 0.999 9 | –0.999 8 | –1.000 0 | ||||
| 1.2 | 0.955 2 | –0.998 0 | –0.999 3 | |||||
| 4.0 | 1.000 0 | –0.999 6 | –0.999 9 | |||||
| 5.0 | 1.000 0 | –0.999 8 | –1.000 0 | |||||
| AB | 1.0 | 0.995 8 | 0.990 2 | –0.999 8 | ||||
| 1.2 | 0.798 2 | 0.740 1 | –0.998 2 | |||||
| 4.0 | 0.976 7 | 0.977 2 | –0.999 7 | |||||
| 5.0 | 0.985 8 | 0.981 9 | –0.999 7 | |||||
| ABG | 1.0 | 0.994 4 | 0.724 8 | –0.999 6 | ||||
| 1.2 | 0.953 4 | 0.602 7 | –0.998 1 | |||||
| 4.0 | 0.985 5 | 0.842 2 | –0.998 1 | |||||
| 5.0 | 0.989 9 | 0.806 5 | –0.999 1 | |||||
| ABCG | 1.0 | 0.825 4 | 0.833 2 | 0.772 5 | ||||
| 1.2 | 0.795 5 | 0.767 2 | 0.810 1 | |||||
| 4.0 | 0.988 3 | 0.883 7 | 0.868 9 | |||||
| 5.0 | 0.992 7 | |||||||
| 1 |  
											王瑞欣, 孙吉广, 刘艳, 等. 计及新能源场站黑启动时空支撑能力的分区目标网架优化[J]. 中国电力, 2024, 57 (10): 143- 149. 
																							 DOI  | 
										
|  
											WANG Ruixin, SUN Jiguang, LIU Yan, et al. Optimization of power system black start partition target network taking into account the black start space-time support capability of new energy station[J]. Electric Power, 2024, 57 (10): 143- 149. 
																							 DOI  | 
										|
| 2 |  
											张睿骁, 梁利, 王定美. 新能源场站快速频率响应分析与高效测试装置设计[J]. 中国电力, 2025, 58 (5): 144- 151. 
																							 DOI  | 
										
|  
											ZHANG Ruixiao, LIANG Li, WANG Dingmei. Fast frequency response analysis and efficient test device design of new energy station[J]. Electric Power, 2025, 58 (5): 144- 151. 
																							 DOI  | 
										|
| 3 |  
											周洋, 黄德志, 李培栋, 等. 考虑平衡端点相位不对称及光伏接入的低压配电网三相潮流模型[J]. 中国电力, 2024, 57 (10): 190- 198. 
																							 DOI  | 
										
|  
											ZHOU Yang, HUANG Dezhi, LI Peidong, et al. A three-phase power flow model for low-voltage distribution networks considering balanced bus phase asymmetry and photovoltaic access[J]. Electric Power, 2024, 57 (10): 190- 198. 
																							 DOI  | 
										|
| 4 | 杜夏恒, 赫玉莹, 邹文, 等. 跟网型和构网型逆变器的阻抗无源化方法综述[J]. 东北电力大学学报, 2024, 44 (2): 12- 20. | 
| DU Xiaheng, HE Yuying, ZOU Wen, et al. An overview of impedance passivation methods forGrid-following and grid-forming inverters[J]. Journal of Northeast Electric Power University, 2024, 44 (2): 12- 20. | |
| 5 |  
											兰国芹, 陆烨, 阚严生, 等. 综合能源服务发展趋势与对策研究[J]. 发电技术, 2025, 46 (1): 19- 30. 
																							 DOI  | 
										
|  
											LAN Guoqin, LU Ye, KAN Yansheng, et al. Research on the development trends and countermeasures of integrated energy services[J]. Power Generation Technology, 2025, 46 (1): 19- 30. 
																							 DOI  | 
										|
| 6 |  
											周洋, 施正香, 洪灿梅, 等. 基于电网跳闸数据分析的供电线路异常状态预警方法[J]. 电网与清洁能源, 2023, 39 (9): 40- 46. 
																							 DOI  | 
										
|  
											ZHOU Yang, SHI Zhengxiang, HONG Canmei, et al. An early warning method of abnormal state of power supply line based on the analysis of power network trip data[J]. Power System and Clean Energy, 2023, 39 (9): 40- 46. 
																							 DOI  | 
										|
| 7 |  
											李亚楼, 赵飞, 樊雪君. 构网型储能及其应用综述[J]. 发电技术, 2025, 46 (2): 386- 398. 
																							 DOI  | 
										
|  
											LI Yalou, ZHAO Fei, FAN Xuejun. Review of grid-forming energy storage and its applications[J]. Power Generation Technology, 2025, 46 (2): 386- 398. 
																							 DOI  | 
										|
| 8 |  
											张心怡, 杨波. 考虑构网型和跟网型变流器的孤岛微电网小信号稳定性分析[J]. 综合智慧能源, 2024, 46 (2): 12- 18. 
																							 DOI  | 
										
|  
											ZHANG Xinyi, YANG Bo. Stability analysis on islanded microgrids with grid-forming and grid-following converters[J]. Integrated Intelligent Energy, 2024, 46 (2): 12- 18. 
																							 DOI  | 
										|
| 9 | 项中明, 倪秋龙, 李振华, 等. 采用功率同步控制的构网型换流器并网暂态同步稳定研究[J]. 浙江电力, 2023, 42 (9): 77- 88. | 
| XIANG Zhongming, NI Qiulong, LI Zhenhua, et al. Research on transient synchronous stability of integrated grid-forming converters using power synchronization control[J]. Zhejiang Electric Power, 2023, 42 (9): 77- 88. | |
| 10 | 温春雪, 毛健, 王鹏, 等. 基于虚拟同步发电机的构网型光储变流器控制策略研究[J]. 内蒙古电力技术, 2024, 42 (1): 1- 8. | 
| WEN Chunxue, MAO Jian, WANG Peng, et al. Research on control strategy of grid-configured photovoltaic storage converters based on VSG[J]. Inner Mongolia Electric Power, 2024, 42 (1): 1- 8. | |
| 11 | 朱作滨, 孙树敏, 丁月明, 等. 基于VSG的低电压穿越控制策略研究[J]. 太阳能学报, 2024, 45 (2): 376- 383. | 
| ZHU Zuobin, SUN Shumin, DING Yueming, et al. Study on low voltage ride through control strategy based on vsg[J]. Acta Energiae Solaris Sinica, 2024, 45 (2): 376- 383. | |
| 12 | 贾科, 刘芸, 毕天姝, 等. 基于自适应虚拟阻抗的构网型新能源电源不对称故障穿越控制[J]. 中国电机工程学报, 2025, 45 (8): 2946- 2956. | 
| JIA Ke, LIU Yun, BI Tianshu, et al. Asymmetric fault ride through of grid-forming control of renewable energy based on adaptive virtual impedance[J]. Proceedings of the CSEE, 2025, 45 (8): 2946- 2956. | |
| 13 |  
											FAN B, LIU T, ZHAO F Z, et al. A review of current-limiting control of grid-forming inverters under symmetrical disturbances[J]. IEEE Open Journal of Power Electronics, 2022, 3, 955- 969. 
																							 DOI  | 
										
| 14 |  
											LI T, LI Y L, CHEN X L, et al. Research on AC microgrid with current-limiting ability using power-state equation and improved Lyapunov-function method[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2021, 9 (6): 7306- 7319. 
																							 DOI  | 
										
| 15 |  
											颜湘武, 贾焦心, 王德胜, 等. 虚拟同步发电机的并网功率控制及模式平滑切换[J]. 电力系统自动化, 2018, 42 (9): 91- 99. 
																							 DOI  | 
										
|  
											YAN Xiangwu, JIA Jiaoxin, WANG Desheng, et al. Power control and smooth mode switchover for grid-connected virtual synchronous generators[J]. Automation of Electric Power Systems, 2018, 42 (9): 91- 99. 
																							 DOI  | 
										|
| 16 | 刘远, 孟建辉, 王健维, 等. 基于虚拟电容的构网型MMC快速平滑切换策略[J]. 电力系统及其自动化学报, 2024, 36 (6): 12- 22. | 
| LIU Yuan, MENG Jianhui, WANG Jianwei, et al. Fast and smooth switching strategy for grid-forming MMC based on virtual capacitors[J]. Proceedings of the CSU-EPSA, 2024, 36 (6): 12- 22. | |
| 17 | 尚磊, 胡家兵, 袁小明, 等. 电网对称故障下虚拟同步发电机建模与改进控制[J]. 中国电机工程学报, 2017, 37 (2): 403- 412. | 
| SHANG Lei, HU Jiabing, YUAN Xiaoming, et al. Modeling and improved control of virtual synchronous generators under symmetrical faults of grid[J]. Proceedings of the CSEE, 2017, 37 (2): 403- 412. | |
| 18 |  
											XIONG L S, LIU X K, ZHAO C Y, et al. A fast and robust real-time detection algorithm of decaying DC transient and harmonic components in three-phase systems[J]. IEEE Transactions on Power Electronics, 2020, 35 (4): 3332- 3336. 
																							 DOI  | 
										
| 19 |  
											季亮, 俞紫琳, 李博通, 等. 基于提升距离保护适应性的改进VSG控制策略研究[J]. 智慧电力, 2024, 52 (6): 9- 15, 70. 
																							 DOI  | 
										
|  
											JI Liang, YU Zilin, LI Botong, et al. Improved VSG control strategy to enhance the adaptability of distance protection[J]. Smart Power, 2024, 52 (6): 9- 15, 70. 
																							 DOI  | 
										|
| 20 | 段建东, 崔帅帅, 刘吴骥, 等. 基于电流频率差的有源配电网线路保护[J]. 中国电机工程学报, 2016, 36 (11): 2927- 2934. | 
| DUAN Jiandong, CUI Shuaishuai, LIU Wuji, et al. Line protection based on current frequency difference for active distribution network[J]. Proceedings of the CSEE, 2016, 36 (11): 2927- 2934. | |
| 21 | 贾科, 杨哲, 魏超, 等. 基于斯皮尔曼等级相关系数的新能源送出线路纵联保护[J]. 电力系统自动化, 2020, 44 (15): 103- 111. | 
| JIA Ke, YANG Zhe, WEI Chao, et al. Pilot protection based on spearman rank correlation coefficient for transmission line connected to renewable energy source[J]. Automation of Electric Power Systems, 2020, 44 (15): 103- 111. | |
| 22 | 彭放, 高厚磊, 郭一飞, 等. 构网逆变电源故障穿越控制策略及其对保护影响的研究综述[J]. 电网技术, 2024, 48 (9): 3673- 3685. | 
| PENG Fang, GAO Houlei, GUO Yifei, et al. A review of fault ride-through control strategies of grid-forming inverter-based resources and the influence on protection[J]. Power System Technology, 2024, 48 (9): 3673- 3685. | |
| 23 | 廖晓玉, 臧睿, 胡家跃. 光纤电流差动保护及其整定计算[J]. 继电器, 2006, 34 (21): 9- 13. | 
| LIAO Xiaoyu, ZANG Rui, HU Jiayue. Line fiber optical differential protection and its setting calculation[J]. Relay, 2006, 34 (21): 9- 13. | |
| 24 |  
											邢鹏翔, 贾璇悦, 许长清, 等. VSG低电压穿越的特性分析及控制方法研究[J]. 电网与清洁能源, 2022, 38 (8): 130- 137, 143. 
																							 DOI  | 
										
|  
											XING Pengxiang, JIA Xuanyue, XU Changqing, et al. A study on characteristic analysis and control methods of low voltage ride through for the VSG[J]. Advances of Power System & Hydroelectric Engineering, 2022, 38 (8): 130- 137, 143. 
																							 DOI  | 
										|
| 25 | 刘航, 王跃, 刘永慧, 等. 基于定量设计虚拟阻抗的VSG低电压穿越策略[J]. 高电压技术, 2022, 48 (1): 245- 256. | 
| LIU Hang, WANG Yue, LIU Yonghui, et al. The LVRT strategy for VSG based on the quantitatively designed virtual impedance[J]. High Voltage Engineering, 2022, 48 (1): 245- 256. | |
| 26 | 毕天姝, 李彦宾, 贾科, 等. 基于暂态电流波形相关性的新能源场站送出线路纵联保护[J]. 中国电机工程学报, 2018, 38 (7): 2012- 2019, 2216. | 
| BI Tianshu, LI Yanbin, JIA Ke, et al. Transient current waveform similarity based pilot protection for transmission lines connected to renewable energy power plants[J]. Proceedings of the CSEE, 2018, 38 (7): 2012- 2019, 2216. | |
| 27 |  
											朱佳, 王峰, 李一泉, 等. 基于Tanimoto相似度的变压器零序差动保护约束方案[J]. 中国电力, 2023, 56 (8): 193- 199. 
																							 DOI  | 
										
|  
											ZHU Jia, WANG Feng, LI Yiquan, et al. Restraint scheme of transformer zero sequence differential protection based on tanimoto similarity[J]. Electric Power, 2023, 56 (8): 193- 199. 
																							 DOI  | 
										|
| 28 | 贾科, 郑黎明, 毕天姝, 等. 基于余弦相似度的风电场站送出线路纵联保护[J]. 中国电机工程学报, 2019, 39 (21): 6263- 6275. | 
| JIA Ke, ZHENG Liming, BI Tianshu, et al. Pilot protection based on cosine similarity for transmission line connected to wind farms[J]. Proceedings of the CSEE, 2019, 39 (21): 6263- 6275. | |
| 29 | 武奕彤, 高厚磊, 袁通, 等. 基于特勒根定理的风场送出线路新型纵联保护[J]. 电力系统保护与控制, 2023, 51 (6): 117- 126. | 
| WU Yitong, GAO Houlei, YUAN Tong, et al. Novel pilot protection for wind farm transmission lines based on Tellegen's theorem[J]. Power System Protection and Control, 2023, 51 (6): 117- 126. | 
| [1] | QIN Kun, QU Zhijiang, HAN Jianwei, XU Tao, GAO Feng, CHI Xiaoli. Battery Optimization Operation Strategy for the "SOP-Storage-Charger" Devices Based on Adjustable Virtual Impedance [J]. Electric Power, 2025, 58(6): 145-155. | 
| [2] | CHEN Maoxin, WANG Kailun, SHEN Yu, ZENG Zhensong, LIN Xuegen, SONG Qiang. Comparison of Grid-Forming Control Solutions for Offshore Wind Farms Connected with Diode Rectifier-Based High Voltage DC Transmission [J]. Electric Power, 2025, 58(5): 166-175. | 
| [3] | Zhaoyi SHA, Congbo WANG, Rongrong ZHAN, Yue YU, Jianfeng WANG. Pilot Protection for Converter-interconnected Lines Based on Multi-stage Mutation of Fault Current [J]. Electric Power, 2024, 57(2): 62-71. | 
| [4] | Shuang LIANG, She WANG, hui XU. Development Achievements and Policy Suggestions of China's West to East Power Transmission for 40 Years [J]. Electric Power, 2024, 57(11): 88-93. | 
| [5] | Tiecheng LI, Hui FAN, Weiming ZHANG, Xianzhi WANG, Yihong ZHANG, Zhihui DAI. Pilot Protection of New Energy Transmission Line in Active Distribution Network Based on 5G Communication [J]. Electric Power, 2024, 57(11): 139-150. | 
| [6] | Yan HUANG, Yingpeng HAO, Huixian WANG, Longye ZHENG, Kaizhe ZHANG, Yinliang XU. Research on Synchronization Control of Distributed Generation Based on Second-Order Unified Model [J]. Electric Power, 2023, 56(12): 41-50. | 
| [7] | Weixuan HE, Zhengzhen FAN, Yaotong HUO, Yingyu LIANG. Pilot Protection Scheme of Submarine Cable in Flexible Low-Frequency Transmission System Based on Cross Entropy Algorithm [J]. Electric Power, 2023, 56(11): 38-48. | 
| [8] | LI Yongsheng, YANG Jialun, ZHENG Weigang, LIU Bin, GAO Zhengxu. Conductor Galloping Distribution Map of Liaoning Province Developed with Specific Return Period [J]. Electric Power, 2022, 55(8): 129-134. | 
| [9] | FANG Chunhua, TAO Yuning, ZHANG Wei, ZHI Li, LI Jing. Analysis and Simulation of Measured Wind Speed and Wind Speed Correction Method of Tower Under Microtopography [J]. Electric Power, 2022, 55(6): 146-153. | 
| [10] | MA Wentao, WANG Jinmei, WANG Yongqi. Influence Analysis of Virtual Impedance on the Stability of Parallel System of Inverters with Different Voltage Levels [J]. Electric Power, 2021, 54(9): 135-142,175. | 
| [11] | YANG Fengli, ZHANG Hongjie, SHAO Shuai, HUANG Guo. Field Observation of Air Density for Transmission Line Corridors in High-altitude Regions [J]. Electric Power, 2021, 54(12): 170-176. | 
| [12] | ZHAO Weibo, DONG Yuming, MO Juan, FANG Zhenggang, LIU Rui. Key Technologies and Business Model of Shared Towers for Power and Communication [J]. Electric Power, 2021, 54(11): 171-180. | 
| [13] | WU Jialing, LU Tiebing. Influence of the VSC-HVDC System Structure on the Overvoltage of Single-Pole Grounding Fault [J]. Electric Power, 2021, 54(10): 20-27. | 
| [14] | CUI Jiaying, LIU Tianqi, WANG Shunliang, MA Junpeng, CHANG Pengfei. A Calculation Method for Line Harmonic Current Based on Three-Terminal HVDC Transmission System [J]. Electric Power, 2021, 54(1): 37-46. | 
| [15] | LI Longji, XI Xiaoguang, LI Zhijian, WANG Xiaoguang, WEN Qingfeng, LI Qiran, ZHOU Kai, LIU Yong, YAO Juntao. Analysis and Prediction of Micro-meteorological Parameters for Power Transmission Lines in Micro-terrain Environment [J]. Electric Power, 2020, 53(3): 76-83. | 
| Viewed | ||||||
| 
										Full text | 
									
										 | 
								|||||
| 
										Abstract | 
									
										 | 
								|||||
