Electric Power ›› 2025, Vol. 58 ›› Issue (5): 166-175.DOI: 10.11930/j.issn.1004-9649.202404024
• New-Type Power Grid • Previous Articles Next Articles
CHEN Maoxin1(), WANG Kailun2, SHEN Yu1, ZENG Zhensong1, LIN Xuegen1, SONG Qiang2(
)
Received:
2024-04-03
Accepted:
2025-01-23
Online:
2025-05-30
Published:
2025-05-28
Supported by:
CHEN Maoxin, WANG Kailun, SHEN Yu, ZENG Zhensong, LIN Xuegen, SONG Qiang. Comparison of Grid-Forming Control Solutions for Offshore Wind Farms Connected with Diode Rectifier-Based High Voltage DC Transmission[J]. Electric Power, 2025, 58(5): 166-175.
参数 | 数值 | 参数 | 数值 | |||
风电场1额定功率/MW | 600 | 二极管直流 平波电抗/mH | 120 | |||
风电场2额定功率/MW | 300 | Rdc/Ω | 1.5 | |||
风电场3额定功率/MW | 100 | Ldc/mH | 80 | |||
滤波电抗(p.u.) | 0.008+j0.2 | Ca1/μF | 36 | |||
滤波电容(p.u.) | 0.05 | Ca2/mF | 1.3 | |||
变压器漏抗(p.u.) | 0.004+j0.1 | La1/mH | 2 | |||
集电海缆等值电阻、电感、电容(相对于各风电场 基值)(p.u.) | La2/μH | 54.7 | ||||
二极管直流额定功率/MW | Ra1/Ω | 3.28 | ||||
二极管直流额定直流电压/kV | ±250 | Cb1/μF | 36 | |||
整流变压器变比/kV | 66/190 | Lb1/mH | 0.49 | |||
二极管变压器漏抗(p.u.) | 0.16 | Rb1/Ω | 59 |
Table 1 Main parameters of the studied system
参数 | 数值 | 参数 | 数值 | |||
风电场1额定功率/MW | 600 | 二极管直流 平波电抗/mH | 120 | |||
风电场2额定功率/MW | 300 | Rdc/Ω | 1.5 | |||
风电场3额定功率/MW | 100 | Ldc/mH | 80 | |||
滤波电抗(p.u.) | 0.008+j0.2 | Ca1/μF | 36 | |||
滤波电容(p.u.) | 0.05 | Ca2/mF | 1.3 | |||
变压器漏抗(p.u.) | 0.004+j0.1 | La1/mH | 2 | |||
集电海缆等值电阻、电感、电容(相对于各风电场 基值)(p.u.) | La2/μH | 54.7 | ||||
二极管直流额定功率/MW | Ra1/Ω | 3.28 | ||||
二极管直流额定直流电压/kV | ±250 | Cb1/μF | 36 | |||
整流变压器变比/kV | 66/190 | Lb1/mH | 0.49 | |||
二极管变压器漏抗(p.u.) | 0.16 | Rb1/Ω | 59 |
参数 | 数值 | |
kq, kpp, kpi(Q/f方案) | 0.005, 1, 5 | |
kp, kq(P/f方案) | 0.05, 0.03 | |
功率测量滤波器时间常数/ms | 10 | |
kp.u., kiu(电压环PI参数) | 0.8, 0 | |
kpi, kii(电流环PI参数) | 1.6, 20 | |
PLL比例增益(海上频率测量) | 1.15 | |
站间通信延时/ms | 50 | |
kfi(MMC频率-功率环) | 150 | |
kpp, kpi(MMC功率-电压环) | 1, 10 |
Table 2 Key control parameters
参数 | 数值 | |
kq, kpp, kpi(Q/f方案) | 0.005, 1, 5 | |
kp, kq(P/f方案) | 0.05, 0.03 | |
功率测量滤波器时间常数/ms | 10 | |
kp.u., kiu(电压环PI参数) | 0.8, 0 | |
kpi, kii(电流环PI参数) | 1.6, 20 | |
PLL比例增益(海上频率测量) | 1.15 | |
站间通信延时/ms | 50 | |
kfi(MMC频率-功率环) | 150 | |
kpp, kpi(MMC功率-电压环) | 1, 10 |
1 |
PAN E S, YUE B, LI X, et al. Integration technology and practice for long-distance offshore wind power in China[J]. Energy Conversion and Economics, 2020, 1 (1): 4- 19.
DOI |
2 |
LI Z X, SONG Q, AN F, et al. Review on DC transmission systems for integrating large-scale offshore wind farms[J]. Energy Conversion and Economics, 2021, 2 (1): 1- 14.
DOI |
3 |
SONG Q, YANG W B, ZHAO B, et al. Low-capacitance modular multilevel converter operating with high capacitor voltage ripples[J]. IEEE Transactions on Industrial Electronics, 2019, 66 (10): 7456- 7467.
DOI |
4 | 罗澍忻, 韩应生, 余浩, 等. 构网型控制在提升高比例新能源并网系统振荡稳定性中的应用[J]. 南方电网技术, 2023, 17 (5): 39- 48. |
LUO Shuxin, HAN Yingsheng, YU Hao, et al. Application of grid-forming control in improving the oscillation stability of power systems with high proportion renewable energy integration[J]. Southern Power System Technology, 2023, 17 (5): 39- 48. | |
5 | BLASCO-GIMENEZ R, AÑÓ-VILLALBA S, RODRÍGUEZ-D’DERLÉE J, et al. Distributed voltage and frequency control of offshore wind farms connected with a diode-based HVDC link[J]. IEEE Transactions on Power Electronics, 2010, 25 (12): 3095- 3105. |
6 |
BLASCO-GIMENEZ R, ANÓ-VILLALBA S, RODRIGUEZ-D’DERLÉE J, et al. Diode-based HVdc link for the connection of large offshore wind farms[J]. IEEE Transactions on Energy Conversion, 2011, 26 (2): 615- 626.
DOI |
7 | MENKE P, ZUROWSKI R, CHRIST T, et al. 2nd generation DC grid access for large scale offshore wind farms[C]//14th Wind Integration Workshop, October 20-22, 2015, Brussels, Belgium. |
8 |
俞露杰, 付子玉, 朱介北, 等. 远海风电DRU-HVDC送出系统构网控制与启动方法综述[J]. 电力系统自动化, 2023, 47 (24): 63- 79.
DOI |
YU Lujie, FU Ziyu, ZHU Jiebei, et al. Review on grid-forming control and start-up method of diode-rectifier-unit based HVDC transmission system for remote offshore wind farm[J]. Automation of Electric Power Systems, 2023, 47 (24): 63- 79.
DOI |
|
9 | PRIGNITZ C, ECKEL H G, ACHENBACH S, et al. FixReF: a control strategy for offshore wind farms with different wind turbine types and diode rectifier HVDC transmission[C]//2016 IEEE 7th International Symposium on Power Electronics for Distributed Generation Systems (PEDG). Vancouver, BC, Canada. IEEE, 2016: 1–7. |
10 | 丰力, 张莲梅, 韦家佳, 等. 基于全生命周期经济评估的海上风电发展与思考[J]. 中国电力, 2024, 57 (9): 80- 93. |
FENG Li, ZHANG Lianmei, WEI Jiajia, et al. Development & thinking of offshore wind power based on life cycle economic evaluation[J]. Electric Power, 2024, 57 (9): 80- 93. | |
11 | 胡小康, 王中权, 綦晓, 等. 考虑最低惯量需求的海上风电与海岛微网频率交互控制策略[J]. 南方电网技术, 2023, 17 (5): 80- 90. |
HU Xiaokang , WANG Zhongquan , QI Xiao, et al. Interaction Frequency regulation strategy between offshore wind farm and island microgrids considering minimum inertia requirement[J]. Southern Power System Technology, 2023, 17 (5): 80- 90. | |
12 |
YU L J, LI R, XU L. Distributed PLL-based control of offshore wind turbines connected with diode-rectifier-based HVDC systems[J]. IEEE Transactions on Power Delivery, 2018, 33 (3): 1328- 1336.
DOI |
13 |
CARDIEL-ÁLVAREZ M Á, ARNALTES S, RODRIGUEZ-AMENEDO J L, et al. Decentralized control of offshore wind farms connected to diode-based HVDC links[J]. IEEE Transactions on Energy Conversion, 2018, 33 (3): 1233- 1241.
DOI |
14 | 黄伟, 翟苏巍, 路学刚, 等. 电压控制对构网型变换器频率响应特性影响分析[J]. 南方电网技术, 2024, 18 (5): 102- 111. |
HUANG Wei, ZHAI Suwei, LU Xuegang, et al. Analysis of the impact of voltage control on the frequency response characteristics of grid-forming converter[J]. Southern Power System Technology, 2024, 18 (5): 102- 111. | |
15 |
ZHANG Z R, JIN Y Q, XU Z. Grid-forming control of wind turbines for diode rectifier unit based offshore wind farm integration[J]. IEEE Transactions on Power Delivery, 2023, 38 (2): 1341- 1352.
DOI |
16 | 张哲任, 金砚秋, 徐政. 两种基于构网型风机和二极管整流单元的海上风电送出方案[J]. 高电压技术, 2022, 48 (6): 2098- 2107. |
ZHANG Zheren, JIN Yanqiu, XU Zheng. Two offshore wind farm integration schemes based on grid forming wind turbines and diode rectifier unit[J]. High Voltage Engineering, 2022, 48 (6): 2098- 2107. | |
17 | 许诘翊, 刘威, 刘树, 等. 电力系统变流器构网控制技术的现状与发展趋势[J]. 电网技术, 2022, 46 (9): 3586- 3595. |
XU Jieyi, LIU Wei, LIU Shu, et al. Current state and development trends of power system converter grid-forming control technology[J]. Power System Technology, 2022, 46 (9): 3586- 3595. | |
18 |
POGAKU N, PRODANOVIC M, GREEN T C. Modeling, analysis and testing of autonomous operation of an inverter-based microgrid[J]. IEEE Transactions on Power Electronics, 2007, 22 (2): 613- 625.
DOI |
19 |
YU L J, LI R, XU L, et al. Analysis and control of offshore wind farms connected with diode rectifier-based HVDC system[J]. IEEE Transactions on Power Delivery, 2020, 35 (4): 2049- 2059.
DOI |
20 |
WANG K L, SONG Q, ZHAO B, et al. Grid-forming control of offshore wind farms connected with diode-based HVDC links based on remote active power regulation[J]. IEEE Transactions on Sustainable Energy, 2024, 15 (2): 1315- 1327.
DOI |
21 |
BLASCO-GIMENEZ R, APARICIO N, ANO-VILLALBA S, et al. LCC-HVDC connection of offshore wind farms with reduced filter banks[J]. IEEE Transactions on Industrial Electronics, 2013, 60 (6): 2372- 2380.
DOI |
22 |
王凯伦, 宋强, 周月宾, 等. 模块化多电平换流器的三轴解耦控制策略[J]. 电力建设, 2022, 43 (5): 29- 39.
DOI |
WANG Kailun, SONG Qiang, ZHOU Yuebin, et al. Three-axis decoupling controller for modular multilevel converter[J]. Electric Power Construction, 2022, 43 (5): 29- 39.
DOI |
|
23 |
YANG W B, SONG Q, LIU W H. Decoupled control of modular multilevel converter based on intermediate controllable voltages[J]. IEEE Transactions on Industrial Electronics, 2016, 63 (8): 4695- 4706.
DOI |
[1] | Xinyang ZHAO, Hongsen ZOU, Chen YANG, Yuqi LI, Botong LI, Siyuan LIU. Fault Type Recognition and Localization Method for Grounding Electrode Line Based on Modulus Backward Traveling Wave [J]. Electric Power, 2025, 58(2): 33-42. |
[2] | ZHAO Yue, YAN Gangui, WANG Zhenyang, REN Shuang, WANG Dazhong, GUO Jianyu. Analysis of Sub-synchronous Torsional Vibration of Wind-Thermal Bundling Transmission System via LCC-HVDC [J]. Electric Power, 2023, 56(6): 18-30. |
[3] | ZHOU Wenjun, CAO Yi, LI Jie, JIN Tao, CHEN Wenjian, ZHOU Xia. Reactive Voltage Emergency Control Strategy of Wind-Thermal-Bundled DC Transmission System Considering Wind Farm Regulation Margin [J]. Electric Power, 2023, 56(4): 77-87. |
[4] | Yan HUANG, Yingpeng HAO, Huixian WANG, Longye ZHENG, Kaizhe ZHANG, Yinliang XU. Research on Synchronization Control of Distributed Generation Based on Second-Order Unified Model [J]. Electric Power, 2023, 56(12): 41-50. |
[5] | LI Qinan, XIA Yongjun, ZHANG Xiaolin, SUN Baokui, SUN Huadong, ZHANG Fan, LI Lanfang, YANG Yuefeng, HAN Qingtao. Key Factors of Medium-High Frequency Oscillation in Chongqing-Hubei HVDC System and Suppression Strategies [J]. Electric Power, 2022, 55(7): 11-21. |
[6] | WANG Shenghui, WANG Ximing, DONG Xinghao, ZHOU Jun. Simulation Experiment on Discharge of Plastic Film Overlapping on UHVDC Transmission Lines [J]. Electric Power, 2022, 55(6): 103-110. |
[7] | QIE Zhaohui, LI Zhaowei, WANG Weizhou, LI Wei, KE Xianbo. Coupling Relationship Between Wind Power Grid-connected Power and DC Transmission Power with DC Block Fault [J]. Electric Power, 2021, 54(6): 175-182. |
[8] | GOU Jing, LIU Fang, KUANG Li, SU Yunche, LI Ao, WEN Yunfeng. Generation Shedding Capacity Optimization of Sending-End Power Grids with Multi-DC Asynchronous Outfeeds Considering Frequency Stability [J]. Electric Power, 2021, 54(5): 101-110. |
[9] | XIA Shiwei, GAO Chenxiang, SUN Yuhao, FENG Moke, ZHAO Chengyong, XU Jianzhong, CHENG Tingting, GU Huaiguang. Real-Time Modeling and Simulation of Flexible DC Grid with Various Types of Current Limiting Devices Based on RT-LAB [J]. Electric Power, 2021, 54(10): 28-37. |
[10] | CUI Jiaying, LIU Tianqi, WANG Shunliang, MA Junpeng, CHANG Pengfei. A Calculation Method for Line Harmonic Current Based on Three-Terminal HVDC Transmission System [J]. Electric Power, 2021, 54(1): 37-46. |
[11] | ZHU Peng, XIA Xiangyang, LI Mingde, LEI Yunfei, XIA Li, ZHOU Zhengxiong, HUANG Hai, YIN Peng, LUO Yanpeng, LI Guangcheng. Fault Identification of DC Transmission Lines Based on Energy Ratio Analysis [J]. Electric Power, 2020, 53(8): 85-90,99. |
[12] | ZHANG Zheren, TANG Yingjie, XU Zheng. Medium Frequency Diode Rectifier Unit Based HVDC Transmission for Offshore Wind Farm Integration [J]. Electric Power, 2020, 53(7): 80-91. |
[13] | TANG Yaohua, GUO Weimin, CUI Yang. Research on the Frequency Control Strategy of Hydro-Thermal Power Generating Units [J]. Electric Power, 2020, 53(6): 153-160,178. |
[14] | LI Anqi, DENG Erping, REN Bin, ZHAO Yushan, ZHAO Zhibin, HUANG Yongzhang. Comparison of Clamping Force Distribution within Press-Pack IGBTs of Different Structures [J]. Electric Power, 2019, 52(9): 11-19,29. |
[15] | CHENG Yijie, HE Tingting, SONG Xiaoning, FENG Likui, YU Zhiyong, GAO Bing, YANG Fan, YANG Qi. Analysis and Application of Grading Electrodes Deposition Model [J]. Electric Power, 2019, 52(9): 86-92. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||