Electric Power ›› 2024, Vol. 57 ›› Issue (11): 139-150.DOI: 10.11930/j.issn.1004-9649.202307031
• New Energy • Previous Articles Next Articles
Tiecheng LI1(), Hui FAN1, Weiming ZHANG1, Xianzhi WANG1, Yihong ZHANG2, Zhihui DAI2
Received:
2023-07-10
Accepted:
2023-10-08
Online:
2024-11-23
Published:
2024-11-28
Supported by:
Tiecheng LI, Hui FAN, Weiming ZHANG, Xianzhi WANG, Yihong ZHANG, Zhihui DAI. Pilot Protection of New Energy Transmission Line in Active Distribution Network Based on 5G Communication[J]. Electric Power, 2024, 57(11): 139-150.
场景 | 异常数据1 | 异常数据2 | AR | 场景 | 异常数据1 | 异常数据2 | AR | |||||||
1 | –1.0 | –0.3 | 54 | 9 | 0.30 | –0.30 | 56 | |||||||
2 | –0.4 | –0.3 | 54 | 10 | 0.40 | –0.30 | 58 | |||||||
3 | –0.3 | –0.3 | 54 | 11 | 0.50 | –0.30 | 58 | |||||||
4 | –0.2 | –0.3 | 54 | 12 | 1.00 | –0.30 | 58 | |||||||
5 | –0.1 | –0.3 | 54 | 13 | 0.01 | 0.20 | 8 | |||||||
6 | 0 | –0.3 | 42 | 14 | 0.20 | 0.01 | 30 | |||||||
7 | 0.1 | –0.3 | 42 | 15 | 0.20 | –0.20 | 44 | |||||||
8 | 0.2 | –0.3 | 44 | 16 | 0.20 | –1.00 | 44 |
Table 1 Changes in AR with different values of abnormal data
场景 | 异常数据1 | 异常数据2 | AR | 场景 | 异常数据1 | 异常数据2 | AR | |||||||
1 | –1.0 | –0.3 | 54 | 9 | 0.30 | –0.30 | 56 | |||||||
2 | –0.4 | –0.3 | 54 | 10 | 0.40 | –0.30 | 58 | |||||||
3 | –0.3 | –0.3 | 54 | 11 | 0.50 | –0.30 | 58 | |||||||
4 | –0.2 | –0.3 | 54 | 12 | 1.00 | –0.30 | 58 | |||||||
5 | –0.1 | –0.3 | 54 | 13 | 0.01 | 0.20 | 8 | |||||||
6 | 0 | –0.3 | 42 | 14 | 0.20 | 0.01 | 30 | |||||||
7 | 0.1 | –0.3 | 42 | 15 | 0.20 | –0.20 | 44 | |||||||
8 | 0.2 | –0.3 | 44 | 16 | 0.20 | –1.00 | 44 |
类型 | 参数 | 数值 | ||
光伏电站 | 额定容量/MW | 8 | ||
逆变器直流母线电压/kV | 1 | |||
逆变器直流侧电容/μF | ||||
光伏额定输出电压/kV | 0.6 | |||
网侧线电压/kV | 10.5 | |||
电网频率/Hz | 50 | |||
额定容量MW | 20 | |||
风电场 | 切入风速/(m·s–1) | 3 | ||
切出风速/(m·s–1) | 25 | |||
额定风速/(m·s–1) | 11 | |||
风机叶片半径/m | 46 | |||
空气密度/(kg·m–3) | 1.225 |
Table 2 Simulation parameters of new energy station
类型 | 参数 | 数值 | ||
光伏电站 | 额定容量/MW | 8 | ||
逆变器直流母线电压/kV | 1 | |||
逆变器直流侧电容/μF | ||||
光伏额定输出电压/kV | 0.6 | |||
网侧线电压/kV | 10.5 | |||
电网频率/Hz | 50 | |||
额定容量MW | 20 | |||
风电场 | 切入风速/(m·s–1) | 3 | ||
切出风速/(m·s–1) | 25 | |||
额定风速/(m·s–1) | 11 | |||
风机叶片半径/m | 46 | |||
空气密度/(kg·m–3) | 1.225 |
故障位置 | 故障类型 | AR | ||||||
A相 | B相 | C相 | ||||||
区内f2 | AG | 450 | 0 | 0 | ||||
AB | 450 | 450 | 0 | |||||
ABG | 450 | 450 | 0 | |||||
ABC | 450 | 450 | 450 | |||||
区内f3 | AG | 450 | 0 | 0 | ||||
AB | 450 | 450 | 0 | |||||
ABG | 450 | 450 | 0 | |||||
ABC | 450 | 450 | 450 |
Table 3 AR value of each fault type in fault zone
故障位置 | 故障类型 | AR | ||||||
A相 | B相 | C相 | ||||||
区内f2 | AG | 450 | 0 | 0 | ||||
AB | 450 | 450 | 0 | |||||
ABG | 450 | 450 | 0 | |||||
ABC | 450 | 450 | 450 | |||||
区内f3 | AG | 450 | 0 | 0 | ||||
AB | 450 | 450 | 0 | |||||
ABG | 450 | 450 | 0 | |||||
ABC | 450 | 450 | 450 |
功率输出/MW | 故障类型 | AR | ||||||
A相 | B相 | C相 | ||||||
0 | AG | 225 | 0 | 0 | ||||
AB | 225 | 225 | 0 | |||||
ABG | 225 | 225 | 0 | |||||
ABC | 225 | 225 | 225 | |||||
10 | AG | 450 | 0 | 0 | ||||
AB | 450 | 450 | 0 | |||||
ABG | 450 | 450 | 0 | |||||
ABC | 450 | 450 | 450 | |||||
20 | AG | 450 | 0 | 0 | ||||
AB | 450 | 450 | 0 | |||||
ABG | 450 | 450 | 0 | |||||
ABC | 450 | 450 | 450 |
Table 4 Protection performance of new energy station under different power outputs
功率输出/MW | 故障类型 | AR | ||||||
A相 | B相 | C相 | ||||||
0 | AG | 225 | 0 | 0 | ||||
AB | 225 | 225 | 0 | |||||
ABG | 225 | 225 | 0 | |||||
ABC | 225 | 225 | 225 | |||||
10 | AG | 450 | 0 | 0 | ||||
AB | 450 | 450 | 0 | |||||
ABG | 450 | 450 | 0 | |||||
ABC | 450 | 450 | 450 | |||||
20 | AG | 450 | 0 | 0 | ||||
AB | 450 | 450 | 0 | |||||
ABG | 450 | 450 | 0 | |||||
ABC | 450 | 450 | 450 |
故障类型 | AR | |||||
A相 | B相 | C相 | ||||
AG | 450 | 68 | 32 | |||
AB | 448 | 450 | 62 | |||
ABG | 450 | 450 | 104 | |||
ABC | 450 | 446 | 446 |
Table 5 Different fault AR values occur in noise environment
故障类型 | AR | |||||
A相 | B相 | C相 | ||||
AG | 450 | 68 | 32 | |||
AB | 448 | 450 | 62 | |||
ABG | 450 | 450 | 104 | |||
ABC | 450 | 446 | 446 |
1 | 蒲天骄, 刘克文, 陈乃仕, 等. 基于主动配电网的城市能源互联网体系架构及其关键技术[J]. 中国电机工程学报, 2015, 35 (14): 3511- 3521. |
PU Tianjiao, LIU Kewen, CHEN Naishi, et al. Design of ADN based urban energy internet architecture and its technological issues[J]. Proceedings of the CSEE, 2015, 35 (14): 3511- 3521. | |
2 | 唐佳雄, 王国锋, 徐宇恒, 等. 配网线路新型灭弧装置熄灭工频电弧的仿真与试验研究[J]. 电测与仪表, 2022, 59 (8): 120- 126. |
TANG Jiaxiong, WANG Guofeng, XU Yuheng, et al. Simulation and experimental research on extinguishing power frequency arc by novel arc extinguishing device in distribution line[J]. Electrical Measurement & Instrumentation, 2022, 59 (8): 120- 126. | |
3 | 陈国平, 董昱, 梁志峰. 能源转型中的中国特色新能源高质量发展分析与思考[J]. 中国电机工程学报, 2020, 40 (17): 5493- 5506. |
CHEN Guoping, DONG Yu, LIANG Zhifeng. Analysis and reflection on high-quality development of new energy with Chinese characteristics in energy transition[J]. Proceedings of the CSEE, 2020, 40 (17): 5493- 5506. | |
4 | 李铁成, 范辉, 臧谦, 等. 基于5G通信的有源配电网多点同步保护方案[J]. 中国电力, 2023, 56 (11): 113- 120. |
LI Tiecheng, FAN Hui, ZANG Qian, et al. Multi-point synchronous protection scheme for active distribution network based on 5G communication[J]. Electric Power, 2023, 56 (11): 113- 120. | |
5 | 朱鹏程, 刘曌煜, 孙可, 等. 基于多分块交替方向乘子法的蜂巢状配电网分布式优化调度[J]. 中国电力, 2023, 56 (6): 90- 100. |
ZHU Pengcheng, LIU Zhaoyu, SUN Ke, et al. Optimal scheduling of honeycomb distribution network based on BADMM[J]. Electric Power, 2023, 56 (6): 90- 100. | |
6 | 罗竟哲, 李杰, 王钢. T接逆变型分布式电源和负荷的馈线纵联保护新原理[J]. 广东电力, 2022, 35 (8): 41- 49. |
LUO Jingzhe, LI Jie, WANG Gang. New principle of pilot protection for feeder T-connected with IIDG and load[J]. Guangdong Electric Power, 2022, 35 (8): 41- 49. | |
7 | 朱英伟, 徐峰, 吴佳毅, 等. 基于序分量的智能分布式配电网保护方案[J]. 广东电力, 2022, 35 (4): 47- 55. |
ZHU Yingwei, XU Feng, WU Jiayi, et al. Intelligent distributed distribution network protection scheme based on sequence component[J]. Guangdong Electric Power, 2022, 35 (4): 47- 55. | |
8 | 曾翔, 文明浩, 钱堃, 等. 逆变型分布式电源接入对接地距离保护的影响与对策[J]. 智慧电力, 2023, 51 (1): 46- 53. |
ZENG Xiang, WEN Minghao, QIAN Kun, et al. Influence of inverter-interfaced distributed generation integration on grounding distance protection and its strategies[J]. Smart Power, 2023, 51 (1): 46- 53. | |
9 | 高崇, 陈沛东, 曹华珍, 等. 中压配电网分布式智能后备保护方案[J]. 南方电网技术, 2023, 17 (8): 77- 84. |
GAO Chong, CHEN Peidong, CAO Huazhen, et al. Distributed intelligent backup protection scheme of medium voltage distribution network[J]. Southern Power System Technology, 2023, 17 (8): 77- 84. | |
10 | 杨国生, 樊沛林, 王聪博, 等. 基于能量分布的新能源场站送出线路纵联保护[J]. 电网技术, 2023, 47 (4): 1415- 1424. |
YANG Guosheng, FAN Peilin, WANG Congbo, et al. Pilot protection based on energy distribution for transmission line connected to renewable power plants[J]. Power System Technology, 2023, 47 (4): 1415- 1424. | |
11 | 王子璇, 马啸, 杨勇, 等. 计及不可测分支负荷电源助增效应的有源配网幅值差动保护新判据[J]. 中国电机工程学报, 2020, 40 (S1): 56- 68. |
WANG Zixuan, MA Xiao, YANG Yong, et al. A new criterion of amplitude differential protection for active distribution network considering load power effect of unmeasurable branches[J]. Proceedings of the CSEE, 2020, 40 (S1): 56- 68. | |
12 | 刘幸蔚, 李永丽, 陈晓龙, 等. 逆变型分布式电源T接线路后纵联差动保护的改进方案[J]. 电网技术, 2016, 40 (4): 1257- 1264. |
LIU Xingwei, LI Yongli, CHEN Xiaolong, et al. An improved scheme of longitudinal differential protection for teed lines with inverter-based distributed generations[J]. Power System Technology, 2016, 40 (4): 1257- 1264. | |
13 | 韩博文, 王钢, 李海锋, 等. 含逆变型分布式电源配电网的新型纵联保护方案[J]. 高电压技术, 2017, 43 (10): 3453- 3462. |
HAN Bowen, WANG Gang, LI Haifeng, et al. Novel pilot protection scheme for distribution networks with inverter-interfaced distributed generators[J]. High Voltage Engineering, 2017, 43 (10): 3453- 3462. | |
14 | LIN X N, MA X, WANG Z X, et al. A novel current amplitude differential protection for active distribution network considering the source-effect of IM-type unmeasurable load branches[J]. International Journal of Electrical Power & Energy Systems, 2021, 129, 106780. |
15 | 王婷, 刘渊, 李凤婷, 等. 光伏T接高压配电网电流差动保护研究[J]. 电力系统保护与控制, 2015, 43 (13): 60- 65. |
WANG Ting, LIU Yuan, LI Fengting, et al. Research on the current differential protection where PV access to the high voltage distribution network with T-type[J]. Power System Protection and Control, 2015, 43 (13): 60- 65. | |
16 | 魏东辉, 于舜尧, 房俊龙. 基于综合序电流的含光伏电源配电网纵联保护方案[J]. 太阳能学报, 2021, 42 (7): 185- 192. |
WEI Donghui, YU Shunyao, FANG Junlong. Pilot protection scheme based on integrated sequence current for distribution network with photovoltaic[J]. Acta Energiae Solaris Sinica, 2021, 42 (7): 185- 192. | |
17 |
朱妍, 陆于平, 黄涛. 计及谐波频率特征的含风电配电网充分式电流幅值差动保护[J]. 电力系统自动化, 2020, 44 (16): 130- 136.
DOI |
ZHU Yan, LU Yuping, HUANG Tao. Sufficient current amplitude differential protection considering frequency characteristic of harmonics for distribution network with wind power[J]. Automation of Electric Power Systems, 2020, 44 (16): 130- 136.
DOI |
|
18 |
FANG Y, JIA K, YANG Z, et al. Impact of inverter-interfaced renewable energy generators on distance protection and an improved scheme[J]. IEEE Transactions on Industrial Electronics, 2019, 66 (9): 7078- 7088.
DOI |
19 |
PRASAD C D, BISWAL M, ABDELAZIZ A Y. Adaptive differential protection scheme for wind farm integrated power network[J]. Electric Power Systems Research, 2020, 187, 106452.
DOI |
20 | 游步新, 卜京, 殷明慧. 基于瞬时电流特征的电流互感器饱和识别改进方法[J]. 电力自动化设备, 2018, 38 (4): 29- 35. |
YOU Buxin, BU Jing, YIN Minghui. Improved identification of CT saturation based on transient current characteristics[J]. Electric Power Automation Equipment, 2018, 38 (4): 29- 35. | |
21 | ZHOU C H, ZOU G B, DU X G, et al. Adaptive current differential protection for active distribution network considering time synchronization error[J]. International Journal of Electrical Power & Energy Systems, 2022, 140, 108085. |
22 | 贾科, 郑黎明, 毕天姝, 等. 基于余弦相似度的风电场站送出线路纵联保护[J]. 中国电机工程学报, 2019, 39 (21): 6263- 6275. |
JIA Ke, ZHENG Liming, BI Tianshu, et al. Pilot protection based on cosine similarity for transmission line connected to wind farms[J]. Proceedings of the CSEE, 2019, 39 (21): 6263- 6275. | |
23 | 胡勇, 郑黎明, 贾科, 等. 基于Tanimoto相似度的光伏场站送出线路纵联保护[J]. 电力系统保护与控制, 2021, 49 (3): 74- 79. |
HU Yong, ZHENG Liming, JIA Ke, et al. Pilot protection based on Tanimoto similarity for a photovoltaic station transmission line[J]. Power System Protection and Control, 2021, 49 (3): 74- 79. | |
24 |
MORGADO A, HUQ K M S, MUMTAZ S, et al. A survey of 5G technologies: regulatory, standardization and industrial perspectives[J]. Digital Communications and Networks, 2018, 4 (2): 87- 97.
DOI |
25 | 娄为, 韩学军, 韩俊, 等. 基于5G和光纤综合通道的输电线路差动保护方法[J]. 电力系统保护与控制, 2022, 50 (1): 158- 166. |
LOU Wei, HAN Xuejun, HAN Jun, et al. A transmission line differential protection method based on 5G and optical fiber integrated channels[J]. Power System Protection and Control, 2022, 50 (1): 158- 166. | |
26 | 邹晓峰, 沈冰, 蒋献伟. 5G通信条件下配网差动保护快速动作方案研究[J]. 电力系统保护与控制, 2022, 50 (16): 163- 169. |
ZOU Xiaofeng, SHEN Bing, JIANG Xianwei. A quick action scheme of differential protection for a distribution network with 5G communication[J]. Power System Protection and Control, 2022, 50 (16): 163- 169. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||