Electric Power ›› 2023, Vol. 56 ›› Issue (11): 49-58, 112.DOI: 10.11930/j.issn.1004-9649.202209011
• Offshore Wind Power Transmission and Grid Connection Technology • Previous Articles Next Articles
Jianhua LI1(), Lu CAO1(
), Renxin YANG2(
), Zhenyan DENG2(
), Zheng LI2(
), Xu CAI2(
)
Received:
2022-09-05
Accepted:
2022-12-04
Online:
2023-11-23
Published:
2023-11-28
Supported by:
Jianhua LI, Lu CAO, Renxin YANG, Zhenyan DENG, Zheng LI, Xu CAI. An Active Frequency Support Strategy for Costal Wind Farms in East China[J]. Electric Power, 2023, 56(11): 49-58, 112.
发电机 | 系统参数 | 数值 | ||
G1 | 调节系数(p.u.) | 0.085 | ||
惯性时间常数H/s | 4.3 | |||
汽轮机再热器时间常数TRH/s | 10.0 | |||
汽轮机HP级功率占比FHP | 0.3 | |||
G2和G3 | 调节系数(p.u.) | 0.085 | ||
惯性时间常数H/s | 4.5 | |||
汽轮机再热器时间常数TRH/s | 10.0 | |||
汽轮机HP级功率占比FHP | 0.3 | |||
G4 | 调节系数(p.u.) | 0.085 | ||
惯性时间常数H/s | 4.6 | |||
汽轮机再热器时间常数TRH/s | 10.0 | |||
汽轮机HP级功率占比FHP | 0.3 | |||
等值Geq | 调节系数(p.u.) | 0.092 | ||
惯性时间常数H/s | 5.4 | |||
汽轮机再热器时间常数TRH/s | 15.0 | |||
汽轮机HP级功率占比FHP | 0.3 |
Table 1 Parameters of the synchronous generators in the East China Grid equivalent model
发电机 | 系统参数 | 数值 | ||
G1 | 调节系数(p.u.) | 0.085 | ||
惯性时间常数H/s | 4.3 | |||
汽轮机再热器时间常数TRH/s | 10.0 | |||
汽轮机HP级功率占比FHP | 0.3 | |||
G2和G3 | 调节系数(p.u.) | 0.085 | ||
惯性时间常数H/s | 4.5 | |||
汽轮机再热器时间常数TRH/s | 10.0 | |||
汽轮机HP级功率占比FHP | 0.3 | |||
G4 | 调节系数(p.u.) | 0.085 | ||
惯性时间常数H/s | 4.6 | |||
汽轮机再热器时间常数TRH/s | 10.0 | |||
汽轮机HP级功率占比FHP | 0.3 | |||
等值Geq | 调节系数(p.u.) | 0.092 | ||
惯性时间常数H/s | 5.4 | |||
汽轮机再热器时间常数TRH/s | 15.0 | |||
汽轮机HP级功率占比FHP | 0.3 |
场景 | 非常规电源 占比/% | 常规机组 开机容量/GW | 传统直流 容量/GW | 新能源 开机容量/GW | ||||||
光伏 | 风电 | |||||||||
1 | 30 | 210 | 60 | 20 | 10 | |||||
2 | 50 | 140 | 60 | 40 | 40 | |||||
3 | 70 | 100 | 60 | 100 | 70 |
Table 2 Proportion of the power source of the East China Grid in three scenarios
场景 | 非常规电源 占比/% | 常规机组 开机容量/GW | 传统直流 容量/GW | 新能源 开机容量/GW | ||||||
光伏 | 风电 | |||||||||
1 | 30 | 210 | 60 | 20 | 10 | |||||
2 | 50 | 140 | 60 | 40 | 40 | |||||
3 | 70 | 100 | 60 | 100 | 70 |
系统参数 | 数值 | |
额定容量/MW | 2 | |
交流线电压基准值/kV | 0.69 | |
直流电压基准值/kV | 1.2 | |
直流电容/mF | 10 | |
滤波电感/μH | 170 | |
滤波电容/μF | 466 | |
箱变漏抗/% | 10 | |
开关频率/kHz | 3 | |
风轮+发电机等效惯性时间常数/s | 11 |
Table 3 Parameters of the PMSG model
系统参数 | 数值 | |
额定容量/MW | 2 | |
交流线电压基准值/kV | 0.69 | |
直流电压基准值/kV | 1.2 | |
直流电容/mF | 10 | |
滤波电感/μH | 170 | |
滤波电容/μF | 466 | |
箱变漏抗/% | 10 | |
开关频率/kHz | 3 | |
风轮+发电机等效惯性时间常数/s | 11 |
H/s | kf | 场景2频率/Hz | 场景3频率/Hz | |||||||
最低点 | 稳定值 | 最低点 | 稳定值 | |||||||
0 | 0 | 49.396 | 49.765 | 48.967 | 49.664 | |||||
5 | 0 | 49.417 | 49.765 | 49.142 | 49.664 | |||||
10 | 0 | 49.425 | 49.765 | 49.158 | 49.664 | |||||
15 | 0 | 49.430 | 49.765 | 49.159 | 49.664 | |||||
0 | 10 | 49.410 | 49.822 | 49.030 | 49.820 | |||||
0 | 20 | 49.419 | 49.845 | 49.046 | 49.900(振荡) | |||||
综合支撑 | 49.462 | 49.845 | 49.312 | 49.820 |
Table 4 The effectiveness of the active frequency support from the wind farms
H/s | kf | 场景2频率/Hz | 场景3频率/Hz | |||||||
最低点 | 稳定值 | 最低点 | 稳定值 | |||||||
0 | 0 | 49.396 | 49.765 | 48.967 | 49.664 | |||||
5 | 0 | 49.417 | 49.765 | 49.142 | 49.664 | |||||
10 | 0 | 49.425 | 49.765 | 49.158 | 49.664 | |||||
15 | 0 | 49.430 | 49.765 | 49.159 | 49.664 | |||||
0 | 10 | 49.410 | 49.822 | 49.030 | 49.820 | |||||
0 | 20 | 49.419 | 49.845 | 49.046 | 49.900(振荡) | |||||
综合支撑 | 49.462 | 49.845 | 49.312 | 49.820 |
1 | 张运洲, 张宁, 代红才, 等. 中国电力系统低碳发展分析模型构建与转型路径比较[J]. 中国电力, 2021, 54 (3): 1- 11. |
ZHANG Yunzhou, ZHANG Ning, DAI Hongcai, et al. Model construction and pathways of low-carbon transition of China's power system[J]. Electric Power, 2021, 54 (3): 1- 11. | |
2 | 时智勇, 王彩霞, 李琼慧. “十四五”中国海上风电发展关键问题[J]. 中国电力, 2020, 53 (7): 8- 17. |
SHI Zhiyong, WANG Caixia, LI Qionghui. Key issues of China’s offshore wind power development in the “14 th five-year plan”[J]. Electric Power, 2020, 53 (7): 8- 17. | |
3 | 蔡旭, 杨仁炘, 周剑桥, 等. 海上风电直流送出与并网技术综述[J]. 电力系统自动化, 2021, 45 (21): 2- 22. |
CAI Xu, YANG Renxin, ZHOU Jianqiao, et al. Review on offshore wind power integration via DC transmission[J]. Automation of Electric Power Systems, 2021, 45 (21): 2- 22. | |
4 | 付红军, 陈惠粉, 赵华, 等. 高渗透率下风电的调频技术研究综述[J]. 中国电力, 2021, 54 (1): 104- 115. |
FU Hongjun, CHEN Huifen, ZHAO Hua, et al. Review on frequency regulation technology with high wind power penetration[J]. Electric Power, 2021, 54 (1): 104- 115. | |
5 |
MAURICIO J M, MARANO A, GOMEZ-EXPOSITO A, et al. Frequency regulation contribution through variable-speed wind energy conversion systems[J]. IEEE Transactions on Power Systems, 2009, 24 (1): 173- 180.
DOI |
6 | 曹军, 王虹富, 邱家驹. 变速恒频双馈风电机组频率控制策略[J]. 电力系统自动化, 2009, 33 (13): 78- 82. |
CAO Jun, WANG Hongfu, QIU Jiaju. Frequency control strategy of variable-speed constant-frequency doubly-fed induction generator wind turbines[J]. Automation of Electric Power Systems, 2009, 33 (13): 78- 82. | |
7 | 刘櫂芮, 贾祺, 严干贵, 等. 基于惯量响应的双馈风电机组动态协调机理研究[J]. 中国电力, 2022, 55 (7): 142- 151. |
LIU Zhaorui, JIA Qi, YAN Gangui, et al. Research on dynamic coordination mechanism of DFIGs based on inertia response[J]. Electric Power, 2022, 55 (7): 142- 151. | |
8 | 李军军, 吴政球. 风电参与一次调频的小扰动稳定性分析[J]. 中国电机工程学报, 2011, 31 (13): 1- 9. |
LI Junjun, WU Zhengqiu. Small signal stability analysis of wind power generation participating in primary frequency regulation[J]. Proceedings of the CSEE, 2011, 31 (13): 1- 9. | |
9 | 那广宇, 王亮, 刘雨桐, 等. 基于VSG的改进型虚拟阻尼控制策略与特性分析[J]. 智慧电力, 2020, 48 (4): 48- 54. |
NA Guangyu, WANG Liang, LIU Yutong, et al. VSG based improved virtual damping control strategy and characteristics analysis[J]. Smart Power, 2020, 48 (4): 48- 54. | |
10 | 钟庆昌. 虚拟同步机与自主电力系统[J]. 中国电机工程学报, 2017, 37 (2): 336- 349. |
ZHONG Qingchang. Virtual synchronous machines and autonomous power systems[J]. Proceedings of the CSEE, 2017, 37 (2): 336- 349. | |
11 | 桑顺, 张琛, 蔡旭, 等. 全功率变换风电机组的电压源控制(一): 控制架构与弱电网运行稳定性分析[J]. 中国电机工程学报, 2021, 41 (16): 5604- 5616. |
SANG Shun, ZHANG Chen, CAI Xu, et al. Voltage source control of wind turbines with full-scale converters (part Ⅰ): control architecture and stability analysis under weak grid conditions[J]. Proceedings of the CSEE, 2021, 41 (16): 5604- 5616. | |
12 |
FU Y, WANG Y, ZHANG X. Integrated wind turbine controller with virtual inertia and primary frequency responses for grid dynamic frequency support[J]. IET Renewable Power Generation, 2017, 11 (8): 1129- 1137.
DOI |
13 |
CAI Y, LI Z, CAI X. Optimal inertia reserve and inertia control strategy for wind farms[J]. Energies, 2020, 13 (5): 1067.
DOI |
14 |
SANG S, ZHANG C, CAI X, et al. Control of a type-IV wind turbine with the capability of robust grid-synchronization and inertial response for weak grid stable operation[J]. IEEE Access, 2019, 7, 58553- 58569.
DOI |
15 |
LIU H Z, CHEN Z. Contribution of VSC-HVDC to frequency regulation of power systems with offshore wind generation[J]. IEEE Transactions on Energy Conversion, 2015, 30 (3): 918- 926.
DOI |
16 | 李宇骏, 杨勇, 李颖毅, 等. 提高电力系统惯性水平的风电场和VSC-HVDC协同控制策略[J]. 中国电机工程学报, 2014, 34 (34): 6021- 6031. |
LI Yujun, YANG Yong, LI Yingyi, et al. Coordinated control of wind farms and VSC-HVDC to improve inertia level of power system[J]. Proceedings of the CSEE, 2014, 34 (34): 6021- 6031. | |
17 | 杨仁炘, 张琛, 蔡旭. 具有频率实时镜像和自主电网同步能力的风场–柔直系统控制方法[J]. 中国电机工程学报, 2017, 37 (2): 496- 506. |
YANG Renxin, ZHANG Chen, CAI Xu. Control of VSC-HVDC with real-time frequency mirroring and self-synchronizing capability for wind farm integration[J]. Proceedings of the CSEE, 2017, 37 (2): 496- 506. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||