Electric Power ›› 2025, Vol. 58 ›› Issue (9): 1-9.DOI: 10.11930/j.issn.1004-9649.202502026
• Key Technologies for Enhancing the Grid Connection Safety Capability of New Energy and New Grid-Connected Entities • Previous Articles Next Articles
Received:2025-02-13
															
							
															
							
															
							
																	Online:2025-09-26
															
							
							
																	Published:2025-09-28
															
							
						Supported by:XU Jinyu, XU Hui. Wind Farm Active Power Scheduling Method Based on Improved Distributed Congestion Control[J]. Electric Power, 2025, 58(9): 1-9.
| 参数 | 数值 | 参数 | 数值 | |||
| 风轮半径R/m | 63 | 积分系数初值 | 20 | |||
| 额定功率PN/MW | 5 | 最佳叶尖速比 | 7.6 | |||
| 额定风速 | 12 | 最大风能利用系数 | ||||
| 最大桨距角 | 85 | 风轮外阻尼 | 0 | |||
| 最小桨距角 | 0 | 低速轴扭转阻尼 | ||||
| 风轮额定转速 | 1.27 | 发电机外阻尼 | 0 | |||
| 风轮最小转速 | 发电机转动惯量 | |||||
| 滤波器时间常数 | 0.1 | 风轮转动惯量 | ||||
| 比例系数初值 | 300 | 低速轴扭转的刚度 | 
Table 1 Wind turbine parameters
| 参数 | 数值 | 参数 | 数值 | |||
| 风轮半径R/m | 63 | 积分系数初值 | 20 | |||
| 额定功率PN/MW | 5 | 最佳叶尖速比 | 7.6 | |||
| 额定风速 | 12 | 最大风能利用系数 | ||||
| 最大桨距角 | 85 | 风轮外阻尼 | 0 | |||
| 最小桨距角 | 0 | 低速轴扭转阻尼 | ||||
| 风轮额定转速 | 1.27 | 发电机外阻尼 | 0 | |||
| 风轮最小转速 | 发电机转动惯量 | |||||
| 滤波器时间常数 | 0.1 | 风轮转动惯量 | ||||
| 比例系数初值 | 300 | 低速轴扭转的刚度 | 
| 1 |  
											田刚领, 武鸿鑫, 李娟, 等. 风电场多功能储能电站功率分配策略[J]. 中国电力, 2024, 57 (9): 247- 256. 
																							 DOI  | 
										
|  
											TIAN Gangling, WU Hongxin, LI Juan, et al. Power distribution strategy of multi-functional energy storage powerstation in wind farm[J]. Electric Power, 2024, 57 (9): 247- 256. 
																							 DOI  | 
										|
| 2 |  
											梁伟, 吴林林, 赖启平, 等. 风电直流送出系统送端交流故障下风机过电压研究[J]. 中国电力, 2023, 56 (4): 28- 37. 
																							 DOI  | 
										
|  
											LIANG Wei, WU Linlin, LAI Qiping, et al. Study on overvoltage of wind farm under AC fault at sending end of HVDC transmission system[J]. Electric Power, 2023, 56 (4): 28- 37. 
																							 DOI  | 
										|
| 3 | 段瑶. 考虑大规模风电对电网频率影响的快速随机潮流算法[J]. 电力科学与技术学报, 2017, 32 (4): 44- 49. | 
| DUAN Yao. Fast probabilistic power flow algorithm considering the impact on power frequencyof large scale wind power injection[J]. Journal of Electric Power Science and Technology, 2017, 32 (4): 44- 49. | |
| 4 | 郑华, 伏睿, 张颖, 等. 构网型储能系统与风力发电的协同控制研究[J]. 电力信息与通信技术, 2023, 21 (11): 48- 54. | 
| ZHENG Hua, FU Rui, ZHANG Ying, et al. Research on collaborative control of the grid-forming electrical storage system with the wind power plant[J]. Electric Power Information and Communication Technology, 2023, 21 (11): 48- 54. | |
| 5 | 李东东, 董楠, 姚寅, 等. 考虑频率响应分散性及系统分区的含风电系统等效惯量估计[J]. 电力系统保护与控制, 2023, 51 (3): 36- 45. | 
| LI Dongdong, DONG Nan, YAO Yin, et al. Equivalent inertia estimation of a power system containing wind power considering dispersion offrequency response and system partitioning[J]. Power System Protection and Control, 2023, 51 (3): 36- 45. | |
| 6 | MORREN J, DE HAAN S W H, KLING W L, et al. Wind turbines emulating inertia and supporting primary frequency control[J]. IEEE Transactions on Power Systems, 2006, 21 (1): 433- 434. | 
| 7 | 江灿. 大规模风电场群参与系统一次调频策略研究[D]. 包头: 内蒙古科技大学, 2023. | 
| JIANG Can. Large-scale wind farm groups participate in the study of primary frequency modulation strategies[D]. Baotou: Inner Mongolia University of Science & Technology, 2023. | |
| 8 | 唐坚, 唐庆宏, 姚禹歌, 等. 风电调频能力的潜力分析[J]. 动力工程学报, 2022, 42 (11): 1138- 1145. | 
| TANG Jian, TANG Qinghong, YAO Yuge, et al. Potential analysis of frequency regulation ability of wind power in the view of energy[J]. Journal of Chinese Society of Power Engineering, 2022, 42 (11): 1138- 1145. | |
| 9 | HENDRAWATI D, DIONOVA B W, Sahid, et al. Design of wind turbines power coefficient on wind farm based centralized control[C]//2021 International Seminar on Intelligent Technology and Its Applications (ISITIA). Surabaya, Indonesia. IEEE, 2021: 315–318. | 
| 10 | BONALA A K, SANDEPUDI S R. Centralised model-predictive decoupled active–reactive power control for three-level neutral point clamped photovoltaic inverter with preference selective index-based objective prioritisation[J]. IET Power Electronics, 2019, 12 (4): 840- 851. | 
| 11 | 杨伟峰, 文云峰, 李立, 等. 考虑疲劳载荷的风电场分散式频率响应策略[J]. 电力自动化设备, 2022, 42 (4): 55- 62. | 
| YANG Weifeng, WEN Yunfeng, LI Li, et al. Decentralized frequency response strategy for wind farm considering fatigue load[J]. Electric Power Automation Equipment, 2022, 42 (4): 55- 62. | |
| 12 | 姚琦, 胡阳, 柳玉, 等. 考虑载荷抑制的风电场分布式自动发电控制[J]. 电工技术学报, 2022, 37 (3): 697- 706. | 
| YAO Qi, HU Yang, LIU Yu, et al. Distributed automatic generation control of wind farm considering load suppression[J]. Transactions of China Electrotechnical Society, 2022, 37 (3): 697- 706. | |
| 13 |  
											杨伟峰, 文云峰, 张武其, 等. 基于风-储联合的双层频率响应控制策略[J]. 电力系统自动化, 2022, 46 (12): 184- 193. 
																							 DOI  | 
										
|  
											YANG Weifeng, WEN Yunfeng, ZHANG Wuqi, et al. Bi-level frequency response control strategy based on wind power and energy storage[J]. Automation of Electric Power Systems, 2022, 46 (12): 184- 193. 
																							 DOI  | 
										|
| 14 | 侯婷. 考虑疲劳优化的风电场分布式有功功率分配策略研究[D]. 北京: 华北电力大学, 2021. | 
| HOU Ting. Research on wind farm distributed active power allocation strategy considering fatigue optimization. Beijing: North China Electric Power University, 2021. | |
| 15 | 姚琦. 风电场有功调度与频率支撑优化控制研究[D]. 北京: 华北电力大学, 2020. | 
| YAO Qi. Research on active power dispatching and frequency optimization control of wind farm[D]. Beijing: North China Electric Power University, 2020. | |
| 16 | 王瑞田. 基于MPC的风电场有功分配策略研究[D]. 北京: 华北电力大学, 2021. | 
| WANG Ruitian. Research on active power distribution strategy of wind farm based on MPC[D]. Beijing: North China Electric Power University, 2021. | |
| 17 |  
											KONG X B, MA L L, WANG C, et al. Large-scale wind farm control using distributed economic model predictive scheme[J]. Renewable Energy, 2022, 181, 581- 591. 
																							 DOI  | 
										
| 18 | 刘肖杰. 基于分布式模型预测控制的孤岛微电网电压协调优化控制策略研究[D]. 广州: 华南理工大学, 2022. | 
| LIU Xiaojie. Coordinated Optimization Control Strategy of Voltagefor Islanded Microgrid Based on Distributed ModelPredictive Control[D]. Guangzhou: South China University of Technology, 2022. | |
| 19 | 薛帅. 大规模海上风电场有功功率的分层分布式控制[D]. 济南: 山东大学, 2021. | 
| XUE Shuai. Hierarchical distributed active power control for large-scale wind farm[D]. Jinan: Shandong University, 2021. | |
| 20 | 黄鑫, 王婕, 邢侃. 双馈风力发电系统的MPPT自适应滑模控制[J]. 水电能源科学, 2021, 39 (12): 214- 218. | 
| HUANG Xin, WANG Jie, XING Kan. Adaptive sliding mode control for maximum power point tracking of doubly-fed wind turbine[J]. Water Resources and Power, 2021, 39 (12): 214- 218. | |
| 21 |  
											陈载宇, 沈春, 殷明慧, 等. 面向AGC的变速变桨风电机组有功功率控制策略[J]. 电力工程技术, 2017, 36 (1): 9- 14. 
																							 DOI  | 
										
|  
											CHEN Zaiyu, SHEN Chun, YIN Minghui, et al. Review of active power control strategy for variable-speed variable-pitch wind turbine participating in AGC[J]. Electric Power Engineering Technology, 2017, 36 (1): 9- 14. 
																							 DOI  | 
										|
| 22 | 张继勇, 嵇仁君, 马一鸣, 等. 风力发电变桨距模糊自适应PID控制[J]. 科技创新与应用, 2022, 12 (33): 16- 19. | 
| ZHANG Jiyong, JI Renjun, MA Yiming, et al. Fuzzy adaptive PID control of variable pitch for wind power generation[J]. Technology Innovation and Application, 2022, 12 (33): 16- 19. | |
| 23 | 曹俊伟, 张硕望, 黄凌翔, 等. 基于自适应桨距角控制策略的风电机组发电性能优化方法[J]. 太阳能, 2024, (5): 52- 61. | 
| CAO Junwei, ZHANG Shuowang, HUANG Lingxiang, et al. Optimization method for wind turbine power generation performance based on self-adaption pitch angle control strategy[J]. Solar Energy, 2024, (5): 52- 61. | |
| 24 | 陈载宇. 低风速风力机最大功率点跟踪控制的性能分析与改进方法[D]. 南京: 南京理工大学, 2019. | 
| CHEN Zaiyu. Performance analysis and improvements for maximum power point tracking control of low wind speed wind turbines[D]. Nanjing: Nanjing University of Science and Technology, 2019. | |
| 25 |  
											李斌, 张镇麒, 于浩辉, 等. 风力发电机组泵控液压系统变桨距控制研究[J]. 液压与气动, 2023, 47 (4): 27- 35. 
																							 DOI  | 
										
|  
											LI Bin, ZHANG Zhenqi, YU Haohui, et al. Study on variable pitch control of pump controlled hydraulic system of wind turbine[J]. Chinese Hydraulics & Pneumatics, 2023, 47 (4): 27- 35. 
																							 DOI  | 
										|
| 26 | 卢奭瑄, 史航. 风力发电机组的桨距角控制技术分析[J]. 集成电路应用, 2023, 40 (9): 70- 72. | 
| LU Shixuan, SHI Hang. Analysis of pitch angle control technology for wind turbine generators[J]. Application of IC, 2023, 40 (9): 70- 72. | |
| 27 |  
											王东风, 张鹏, 黄宇, 等. 针对风机变桨距控制系统隐蔽攻击的防御方法研究[J]. 电力科学与工程, 2024, 40 (5): 47- 54. 
																							 DOI  | 
										
|  
											WANG Dongfeng, ZHANG Peng, HUANG Yu, et al. Research on the defense method of covert attack for variable pitch control system of wind turbine[J]. Electric Power Science and Engineering, 2024, 40 (5): 47- 54. 
																							 DOI  | 
										
| [1] | WANG Guanchao, HUO Yuchong, LI Qun, LI Qiang. Power Optimization of Wind Farms Based on Improved Jensen Model and Deep Reinforcement Learning [J]. Electric Power, 2025, 58(4): 78-89. | 
| [2] | ZHU Qianlong, JIN Xiaoqiang, WANG Xuli, SU Fanya, DENG Tianbai, TAO Jun. Minimum Risk Quantification Method for Equivalent Error Threshold of Wind Farm Based on Bayes Criterion [J]. Electric Power, 2025, 58(4): 98-106. | 
| [3] | Xupeng SONG, Xiaoyang YANG, Zhengzhen FAN. Differential Protection of Main Transformer of Doubly-Fed Wind Farm Based on Current Synthesized Vector Trajectory Characteristics [J]. Electric Power, 2025, 58(2): 9-21. | 
| [4] | Jingbo ZHAO, Wenbo LI, Xinyao ZHU, Qingbin SUN, Quanrui HAO. Adaptive Control Strategy for Receiving-end Disturbance of Offshore Wind Power through MMC-HVDC System [J]. Electric Power, 2025, 58(1): 26-38. | 
| [5] | Zejia WANG, Minxiao HAN, Yiwen FAN. Suppression Strategy of Sub/Super-synchronous Oscillations in Doubly-Fed Wind Farm Based on SVG Additional Current Feedback Impedance Reshaping [J]. Electric Power, 2024, 57(8): 55-66. | 
| [6] | Jing YE, Junwen CAI, Lei ZHANG, Guanghao ZHOU, Jiehui HE, Xue ZHAI. Topology Optimization of Offshore Wind Power Collection System Considering Actual Carrying Capacity of Submarine Cables [J]. Electric Power, 2024, 57(7): 173-181. | 
| [7] | Jie YAN, Jialin YANG, Hangyu WANG, Jiaoyang LU, Yongqian LIU, Lei ZHANG. Offshore Wind Farm Wake Deflection Control Based on Adaptive Wind Condition Prediction Error [J]. Electric Power, 2024, 57(3): 190-196. | 
| [8] | DONG Shuwen, LIU Baozhu, HU Junjie. Expansion Planning Method of Power Grid with Wind Power Considering Optimal Switching and Current Limiting [J]. Electric Power, 2023, 56(8): 117-125,142. | 
| [9] | XU Yanchun, FAN Zhongyao, SUN Sihan, MI Lu. Differential Protection of Transmission Transformer for Large-Scale Doubly-Fed Wind Farms Based on Detrended Analysis [J]. Electric Power, 2023, 56(7): 186-197. | 
| [10] | YE Jing, ZHOU Guanghao, ZHANG Lei, YANG Li, ZHAI Xue, CAI Junwen. Path Optimization of Submarine Cables for Offshore Wind Farm Considering Feeder Crossing Avoidance [J]. Electric Power, 2023, 56(6): 167-175. | 
| [11] | LIANG Wei, WU Linlin, LAI Qiping, LI Dongsheng, XU Man, SHEN Chen. Study on Overvoltage of Wind Farm Under AC Fault at Sending End of HVDC Transmission System [J]. Electric Power, 2023, 56(4): 28-37. | 
| [12] | YANG Shuting, CHEN Xin, HUANG Tong, WEI Qixuan. Impedance Modeling Method of Offshore Wind Farm Integration Through MMC-HVDC With MMC Circulation Control [J]. Electric Power, 2023, 56(4): 38-45. | 
| [13] | LIU Liantao, LIU Fei, JI Ping, LIN Weifang, ZHANG Xiangcheng, TIAN Xu, GAO Fei. Research on Optimal Control Strategy of Energy Storage for Improving New Energy Consumption [J]. Electric Power, 2023, 56(3): 137-143. | 
| [14] | Chaohui WANG, Songge HUANG, Bin LIN, Yuwei CHEN, Shumin FAN, Zhaohui SHI. Economic Analysis of Maximum Cross-Section of Submarine Cables for 66 kV Offshore Wind Farm Collection Systems [J]. Electric Power, 2023, 56(11): 20-28. | 
| [15] | Jianhua LI, Lu CAO, Renxin YANG, Zhenyan DENG, Zheng LI, Xu CAI. An Active Frequency Support Strategy for Costal Wind Farms in East China [J]. Electric Power, 2023, 56(11): 49-58, 112. | 
| Viewed | ||||||
| 
										Full text | 
									
										 | 
								|||||
| 
										Abstract | 
									
										 | 
								|||||

