Electric Power ›› 2024, Vol. 57 ›› Issue (3): 190-196.DOI: 10.11930/j.issn.1004-9649.202303020
• New Energy • Previous Articles Next Articles
					
													Jie YAN1(
), Jialin YANG1(
), Hangyu WANG1(
), Jiaoyang LU1, Yongqian LIU1, Lei ZHANG2
												  
						
						
						
					
				
Received:2023-03-06
															
							
															
							
																	Accepted:2023-06-04
															
							
																	Online:2024-03-23
															
							
							
																	Published:2024-03-28
															
							
						Supported by:Jie YAN, Jialin YANG, Hangyu WANG, Jiaoyang LU, Yongqian LIU, Lei ZHANG. Offshore Wind Farm Wake Deflection Control Based on Adaptive Wind Condition Prediction Error[J]. Electric Power, 2024, 57(3): 190-196.
| 风向 | 风速/(m∙s–1) | 风速预测 误差/(m∙s–1)  | 风向预测 误差/(°)  | |||
| 主导/非主导 | 5 | [–1, 1], 分辨率为0.1  | — | |||
| 6 | ||||||
| 7 | ||||||
| 8 | ||||||
| 9 | ||||||
| 主导/非主导 | 5 | — | [–10, 10], 分辨率为1  | |||
| 6 | ||||||
| 7 | ||||||
| 8 | ||||||
| 9 | 
Table 1 Scene setting
| 风向 | 风速/(m∙s–1) | 风速预测 误差/(m∙s–1)  | 风向预测 误差/(°)  | |||
| 主导/非主导 | 5 | [–1, 1], 分辨率为0.1  | — | |||
| 6 | ||||||
| 7 | ||||||
| 8 | ||||||
| 9 | ||||||
| 主导/非主导 | 5 | — | [–10, 10], 分辨率为1  | |||
| 6 | ||||||
| 7 | ||||||
| 8 | ||||||
| 9 | 
| 1 |  
											房方, 梁栋炀, 刘亚娟, 等. 海上风电智能控制与运维关键技术[J]. 发电技术, 2022, 43 (2): 175- 185. 
																							 DOI  | 
										
|  
											FANG Fang, LIANG Dongyang, LIU Yajuan, et al. Key technologies for intelligent control and operation and maintenance of offshore wind power[J]. Power Generation Technology, 2022, 43 (2): 175- 185. 
																							 DOI  | 
										|
| 2 | 葛畅, 阎洁, 刘永前, 等. 海上风电场运行控制维护关键技术综述[J]. 中国电机工程学报, 2022, 42 (12): 4278- 4291. | 
| GE Chang, YAN Jie, LIU Yongqian, et al. Review of key technologies for operation control and maintenance of offshore wind farm[J]. Proceedings of the CSEE, 2022, 42 (12): 4278- 4291. | |
| 3 |  
											HUSIEN W, EL-OSTA W, DEKAM E. Effect of the wake behind wind rotor on optimum energy output of wind farms[J]. Renewable Energy, 2013, 49, 128- 132. 
																							 DOI  | 
										
| 4 |  
											SANDERSE B, PIJL S P, KOREN B. Review of computational fluid dynamics for wind turbine wake aerodynamics[J]. Wind Energy, 2011, 14 (7): 799- 819. 
																							 DOI  | 
										
| 5 | POLSSTER M. Comprehensive comparison of analytical wind turbine wake models with wind tunnel measurements and wake model application on performance modelling of a downstream turbine[D]. Trondheim: Norwegian University of Science and Technology, 2017: 1–19. | 
| 6 | 顾波. 风电场尾流快速计算及场内优化调度研究[D]. 北京: 华北电力大学, 2016. | 
| GU Bo. Wake fast-calculation and power optimal dispatch for wind farms[D]. Beijing: North China Electric Power University, 2016. | |
| 7 |  
											杨志超, 高丙团, 叶飞, 等. 基于尾流效应的风电场最大出力优化控制[J]. 电力建设, 2017, 38 (4): 96- 102. 
																							 DOI  | 
										
|  
											YANG Zhichao, GAO Bingtuan, YE Fei, et al. Maximum output optimal control of wind farm based on wake effect[J]. Electric Power Construction, 2017, 38 (4): 96- 102. 
																							 DOI  | 
										|
| 8 | 邓智文, 郭苏, 许昌, 等. 海上风电场功率提升和疲劳平衡综合优化控制[J]. 太阳能学报, 2021, 42 (1): 180- 186. | 
| DENG Zhiwen, GUO Su, XU Chang, et al. Comprehensive optimization control of power boost and fatigue balance for offshore wind farms[J]. Acta Energiae Solaris Sinica, 2021, 42 (1): 180- 186. | |
| 9 | 宁旭, 曹留帅, 万德成. 基于尾流模型的风场偏航控制优化研究[J]. 海洋工程, 2020, 38 (5): 80- 90. | 
| NING Xu, CAO Liushuai, WAN Decheng. Study of wind farm optimization through yaw control based on analytical wake model[J]. The Ocean Engineering, 2020, 38 (5): 80- 90. | |
| 10 |  
											焦鑫, 陈为国, 张志军, 等. 基于偏航尾流模型的风场尾流主动控制[J]. 自动化技术与应用, 2020, 39 (5): 110- 114. 
																							 DOI  | 
										
|  
											JIAO Xin, CHEN Weiguo, ZHANG Zhijun, et al. Active control of wind field wake based on yaw wake model[J]. Techniques of Automation and Applications, 2020, 39 (5): 110- 114. 
																							 DOI  | 
										|
| 11 |  
											DOU B Z, QU T M, LEI L P, et al. Optimization of wind turbine yaw angles in a wind farm using a three-dimensional yawed wake model[J]. Energy, 2020, 209, 118415. 
																							 DOI  | 
										
| 12 |  
											SUN H Y, QIU C Y, LU L, et al. Wind turbine power modelling and optimization using artificial neural network with wind field experimental data[J]. Applied Energy, 2020, 280, 115880. 
																							 DOI  | 
										
| 13 |  
											YANG S H, DENG X W, TI Z L, et al. Cooperative yaw control of wind farm using a double-layer machine learning framework[J]. Renewable Energy, 2022, 193, 519- 537. 
																							 DOI  | 
										
| 14 | 王航宇. 基于风过程的风电场尾流优化控制方法研究[D]. 北京: 华北电力大学, 2022. | 
| Wang Hangyu. Research on the optimal control method of wind farm wake based on wind process [D]. Beijing: North China Electric Power University, 2022. | |
| 15 |  
											FLEMING P, KING J, DYKES K, et al. Initial results from a field campaign of wake steering applied at a commercial wind farm[J]. Wind Energy Science, 2019, 4 (2): 273- 285. 
																							 DOI  | 
										
| 16 |  
											刘永前, 周家慷, 阎洁, 等. 基于多任务学习的风速实时预测方法[J]. 可再生能源, 2021, 39 (4): 481- 487. 
																							 DOI  | 
										
|  
											LIU Yongqian, ZHOU Jiakang, YAN Jie, et al. Wind speed real-time prediction method based on multi-task learning[J]. Renewable Energy Resources, 2021, 39 (4): 481- 487. 
																							 DOI  | 
										|
| 17 | 张金良, 刘子毅. 基于混合模型的超短期风速区间预测[J]. 电力系统保护与控制, 2022, 50 (22): 49- 58. | 
| ZHANG Jinliang, LIU Ziyi. Ultra short term wind speed interval prediction based on a hybrid model[J]. Power System Protection and Control, 2022, 50 (22): 49- 58. | |
| 18 | 姜明洋, 徐丽, 张开军, 等. 基于季节指数调整的循环神经网络风速时间序列预测[J]. 太阳能学报, 2022, 43 (2): 444- 450. | 
| JIANG Mingyang, XU Li, ZHANG Kaijun, et al. Recurrent neural network prediction of wind speed time series based on seasonal exponential adjustment[J]. Acta Energiae Solaris Sinica, 2022, 43 (2): 444- 450. | |
| 19 | 唐振浩, 赵赓楠, 曹生现, 等. 基于SWLSTM算法的超短期风向预测[J]. 中国电机工程学报, 2019, 39 (15): 4459- 4468. | 
| TANG Zhenhao, ZHAO Gengnan, CAO Shengxian, et al. Very short-term wind direction prediction via self-tuning wavelet long-short term memory neural network[J]. Proceedings of the CSEE, 2019, 39 (15): 4459- 4468. | |
| 20 | 唐振浩, 赵赓楠, 曹生现, 等. 一种基于数据解析的混合风向预测算法[J]. 太阳能学报, 2021, 42 (9): 349- 356. | 
| TANG Zhenhao, ZHAO Gengnan, CAO Shengxian, et al. A data analystic based hybrid wind direction prediction algorithm[J]. Acta Energiae Solaris Sinica, 2021, 42 (9): 349- 356. | |
| 21 | 贾睿, 杨国华, 郑豪丰, 等. 基于自适应权重的CNN-LSTM&GRU组合风电功率预测方法[J]. 中国电力, 2022, 55 (5): 47- 56, 110. | 
| JIA Rui, YANG Guohua, ZHENG Haofeng, et al. Combined wind power prediction method based on CNN-LSTM & GRU with adaptive weights[J]. Electric Power, 2022, 55 (5): 47- 56, 110. | |
| 22 |  
											高阳, 谢丽蓉, 叶家豪, 等. 自适应提升及预测误差修正的风电功率超短期预测[J]. 智慧电力, 2022, 50 (8): 14- 21. 
																							 DOI  | 
										
|  
											GAO Yang, XIE Lirong, YE Jiahao, et al. Ultra-short-term wind power prediction based on adaptive lifting and prediction error correction[J]. Smart Power, 2022, 50 (8): 14- 21. 
																							 DOI  | 
										|
| 23 | 罗佑新, 何哲明, 车晓毅. 非线性方程组求解的超混沌序列最小二乘法及其应用[J]. 湖南文理学院学报(自然科学版), 2010, 22 (1): 36- 39. | 
| LUO Youxin, HE Zheming, CHE Xiaoyi. Hyper-chaotic sequence least square method for solving nonlinear equations and its application[J]. Journal of Hunan University of Arts and Science (Natural Science Edition), 2010, 22 (1): 36- 39. | |
| 24 |  
											IBRAHIM Y, WANG H B, LIU J Y, et al. Soft errors in DNN accelerators: a comprehensive review[J]. Microelectronics Reliability, 2020, 115, 113969. 
																							 DOI  | 
										
| 25 |  
											HAN H, XU L, CUI X Y, et al. Novel chiller fault diagnosis using deep neural network (DNN) with simulated annealing (SA)[J]. International Journal of Refrigeration, 2021, 121, 269- 278. 
																							 DOI  | 
										
| [1] | TAO Jun, ZHONG Ming, ZHANG Yi, LIU Feng, WU Yuzhu, XIA Zhenxing. Fault Location Method for Secondary System of Smart Substations Based on Network Flow Algorithm and Deep Neural Network [J]. Electric Power, 2025, 58(9): 68-78. | 
| [2] | Jing YE, Junwen CAI, Lei ZHANG, Guanghao ZHOU, Jiehui HE, Xue ZHAI. Topology Optimization of Offshore Wind Power Collection System Considering Actual Carrying Capacity of Submarine Cables [J]. Electric Power, 2024, 57(7): 173-181. | 
| [3] | Laien CHEN, Xiaoyong ZENG, Zihao ZENG, Caichen CHENG, Yaoke SUN. Temperature Prediction of Lithium-Ion Batteries Based on Physical Information and Deep Neural Network [J]. Electric Power, 2024, 57(11): 18-25. | 
| [4] | YE Jing, ZHOU Guanghao, ZHANG Lei, YANG Li, ZHAI Xue, CAI Junwen. Path Optimization of Submarine Cables for Offshore Wind Farm Considering Feeder Crossing Avoidance [J]. Electric Power, 2023, 56(6): 167-175. | 
| [5] | YANG Shuting, CHEN Xin, HUANG Tong, WEI Qixuan. Impedance Modeling Method of Offshore Wind Farm Integration Through MMC-HVDC With MMC Circulation Control [J]. Electric Power, 2023, 56(4): 38-45. | 
| [6] | Chaohui WANG, Songge HUANG, Bin LIN, Yuwei CHEN, Shumin FAN, Zhaohui SHI. Economic Analysis of Maximum Cross-Section of Submarine Cables for 66 kV Offshore Wind Farm Collection Systems [J]. Electric Power, 2023, 56(11): 20-28. | 
| [7] | LIAO Xiupu, ZHOU Quan, LI Lei, LI Binbin, WANG Zhiyuan, YANG Ming, XU Dianguo. A Feasible Topology of DC Collection Valve for Long-Distance Offshore Wind Farms and Cost-Effective Analysis [J]. Electric Power, 2022, 55(6): 118-127. | 
| [8] | HUANG Weijie, JIANG Yuewen. Comparison of Economic Feasibilites Between Power Transmission and Hydrogen Production from an Offshore Wind Farm [J]. Electric Power, 2022, 55(1): 91-100. | 
| [9] | ZHANG Zheren, TANG Yingjie, XU Zheng. Medium Frequency Diode Rectifier Unit Based HVDC Transmission for Offshore Wind Farm Integration [J]. Electric Power, 2020, 53(7): 80-91. | 
| [10] | LYU Jie, YANG Weijia, HUANG Wei, PANG Hui, KONG Ming, YANG Yunxia, ZHANG Wenwen. Techno-economic of 66 kV AC Connection Solution for Offshore Wind Power [J]. Electric Power, 2020, 53(7): 72-79. | 
| [11] | LIU Weidong, LI Qinan, WANG Xuan, ZHANG Fan, LI Lanfang, YAN Hui. Application Status and Prospect of VSC-HVDC Technology for Large-Scale Offshore Wind Farms [J]. Electric Power, 2020, 53(7): 55-71. | 
| [12] | YANG Yuan, YANG Xi, TAN Jiangping, CHEN Liang, XIN Yanli, CHEN Xia. Optimization of Reactive Power Configuration for Offshore Wind Farms [J]. Electric Power, 2020, 53(11): 195-201. | 
| [13] | MIN Xuan, WEN Zhike, ZENG Yunfei, FU Jing. Characteristics of Windage Yaw in UHV Insulator Strings under Fluctuating Wind [J]. Electric Power, 2016, 49(3): 65-71. | 
| [14] | MIN Xuan, WEN Zhi-ke, WU Xiang-dong, SHAO Gui-wei, JI Kun, CAI Huan-qing. Research on the Windage Yaw Calculation of UHV Long Insulator String [J]. Electric Power, 2014, 47(1): 28-34. | 
| Viewed | ||||||
| 
										Full text | 
									
										 | 
								|||||
| 
										Abstract | 
									
										 | 
								|||||
