Electric Power ›› 2025, Vol. 58 ›› Issue (4): 78-89.DOI: 10.11930/j.issn.1004-9649.202410051
• Key Technologies for Transient Operation Control and Test Verification of Wind Turbines • Previous Articles Next Articles
WANG Guanchao1(), HUO Yuchong1(
), LI Qun2(
), LI Qiang2(
)
Received:
2024-10-15
Accepted:
2025-01-13
Online:
2025-04-23
Published:
2025-04-28
Supported by:
WANG Guanchao, HUO Yuchong, LI Qun, LI Qiang. Power Optimization of Wind Farms Based on Improved Jensen Model and Deep Reinforcement Learning[J]. Electric Power, 2025, 58(4): 78-89.
参数 | 数值 | |
126, 500, 1.225, | ||
64, 0.001, 0.01, 0.01, 104, 0.99 | ||
迭代轮数, 步数 | ||
0.1,1 |
Table 1 Simulation parameters setting
参数 | 数值 | |
126, 500, 1.225, | ||
64, 0.001, 0.01, 0.01, 104, 0.99 | ||
迭代轮数, 步数 | ||
0.1,1 |
1 |
BOLINGER M, WISER R. Understanding wind turbine price trends in the U. S. over the past decade[J]. Energy Policy, 2012, 42, 628- 641.
DOI |
2 |
王俊, 段斌, 苏永新. 基于尾流效应的海上风电场有功出力优化[J]. 电力系统自动化, 2015, 39 (4): 26- 32, 75.
DOI |
WANG Jun, DUAN Bin, SU Yongxin. Optimization of active power output in offshore wind farms based on wake effect[J]. Automation of Electric Power Systems, 2015, 39 (4): 26- 32, 75.
DOI |
|
3 |
刘玉山, 胡阔海, 王灵梅, 等. 考虑尾流效应的风电场输出功率优化[J]. 可再生能源, 2023, 41 (10): 1336- 1342.
DOI |
LIU Yushan, HU Kuohai, WANG Lingmei, et al. Optimization of wind farm output power considering wake effect[J]. Renewable Energy Resources, 2023, 41 (10): 1336- 1342.
DOI |
|
4 |
高丙团, 胡正阳, 张磊, 等. 考虑尾流效应的风电场减载出力优化控制[J]. 可再生能源, 2018, 36 (1): 117- 125.
DOI |
GAO Bingtuan, HU Zhengyang, ZHANG Lei, et al. De-loading optimal control of wind farm based on wake effect[J]. Renewable Energy Resources, 2018, 36 (1): 117- 125.
DOI |
|
5 | 朱成名, 魏云冰, 蒋成成, 等. 基于PSO-BP神经网络的风电功率备用容量估计模型[J]. 电子科技, 2021, 34 (12): 36- 41. |
ZHU Chengming, WEI Yunbing, JIANG Chengcheng, et al. Estimation model of wind power reserve capacity based on PSO-BP neural network[J]. Electronic Science and Technology, 2021, 34 (12): 36- 41. | |
6 |
DAR Z, KAR K, SAHNI O, et al. Windfarm power optimization using yaw angle control[J]. IEEE Transactions on Sustainable Energy, 2017, 8 (1): 104- 116.
DOI |
7 |
VALI M, PETROVIĆ V, BOERSMA S, et al. Adjoint-based model predictive control for optimal energy extraction in waked wind farms[J]. Control Engineering Practice, 2019, 84, 48- 62.
DOI |
8 | YIN X X, ZHAO X W. Deep neural learning based distributed predictive control for offshore wind farm using high-fidelity LES data[J]. IEEE Transactions on Industrial Electronics, 2020, 68 (4): 3251- 3261. |
9 | ZHOU Q, LI W B, LIU C B, et al. Strategy of wind farm participating in power system secondary frequency regulation based on model predictive control[C]//2021 IEEE Sustainable Power and Energy Conference (iSPEC). Nanjing, China. IEEE, 2021: 524-531. |
10 |
AHMAD M, AZUMA S I, SUGIE T. A model-free approach for maximizing power production of wind farm using multi-resolution simultaneous perturbation stochastic approximation[J]. Energies, 2014, 7 (9): 5624- 5646.
DOI |
11 | ZHIWEI X, HUA G, BING C. Model-free power optimization of wind farm based on nelder-mead method [M]. 2020. |
12 | VIJAYSHANKAR S, STANFEL P, KING J, et al. Deep reinforcement learning for automatic generation control of wind farms[C]//2021 American Control Conference (ACC). New Orleans, LA, USA. IEEE, 2021: 1796–1802. |
13 |
YAO Q, ZHANG Y M, SUN S X, et al. Optimization of energy efficiency for offshore wind farms via wake modeling-free NMPC[J]. Ocean Engineering, 2024, 305, 117923.
DOI |
14 | DONG H Y, ZHAO X W. Data-driven wind farm control via multiplayer deep reinforcement learning[J]. IEEE Transactions on Control Systems Technology, 2022, 31 (3): 1468- 1475. |
15 |
DONG H Y, ZHANG J C, ZHAO X W. Intelligent wind farm control via deep reinforcement learning and high-fidelity simulations[J]. Applied Energy, 2021, 292, 116928.
DOI |
16 |
HUANG Y B, LIN S Y, ZHAO X W. Multi-agent reinforcement learning control of a hydrostatic wind turbine-based farm[J]. IEEE Transactions on Sustainable Energy, 2023, 14 (4): 2406- 2416.
DOI |
17 |
袁飞. 风电场常用工程尾流模型对比与分析[J]. 能源与节能, 2023, (11): 37- 41,58.
DOI |
YUAN Fei. Comparison and analysis of commonly used engineering wake models in wind farms[J]. Energy and Energy Conservation, 2023, (11): 37- 41,58.
DOI |
|
18 |
朱洁, 匡婵, 赵宜婵. 基于Jensen和Gaussian尾流模型的风电场布局优化的比较[J]. 河南科学, 2021, 39 (3): 345- 352.
DOI |
ZHU Jie, KUANG Chan, ZHAO Yichan. Comparison of wind farm layout optimizations based on Jensen and Gaussian wake models[J]. Henan Science, 2021, 39 (3): 345- 352.
DOI |
|
19 |
ARCHER C L, VASEL-BE-HAGH A, YAN C, et al. Review and evaluation of wake loss models for wind energy applications[J]. Applied Energy, 2018, 226, 1187- 1207.
DOI |
20 |
XU C, YIN M H, LI Q, et al. Wind farm power maximization based on analytical sensitivity model considering wake effect[J]. Electric Power Systems Research, 2023, 224, 109734.
DOI |
21 |
SERRANO GONZÁLEZ J, BURGOS PAYÁN M, RIQUELME SANTOS J, et al. Maximizing the overall production of wind farms by setting the individual operating point of wind turbines[J]. Renewable Energy, 2015, 80, 219- 229.
DOI |
22 |
ZHANG H Q, MA H B, ZHANG X F, et al. An efficient and lightweight off-policy actor–critic reinforcement learning framework[J]. Applied Soft Computing, 2024, 163, 111814.
DOI |
23 | 李强, 邹小明, 任必兴, 等. 基于Actor-Critic框架的风机换流器参数优化策略[J]. 现代电力, 1–10[2025-04-09]. http://doi.org/10.19725/j.cnki.1007-2322.2023.0310. |
LI Qiang, ZOU Xiaoming, REN Bixing, et al. Parameter optimization strategy for wind generator converters based on actor-critic framework[J]. Modern Electric Power, 2024, 1–10[2025-04-09]. http://doi.org/10.19725/j.cnki.1007-2322.2023.0310. | |
24 | BOERSMA S. Towards closed-loop dynamical wind farm control: model development and control applications [D]. Delft: Delft University of Technology, 2019. |
25 | NREL. NREL 5-MW baseline wind turbine[EB/OL]. https://nrel.github.io/turbine-models/NREL_5MW_126_RWT.html. |
[1] | LI Peng, ZU Wenjing, LIU Yixin, TIAN Chunzheng, HAO Yuanzhao, LI Huixuan. State Estimation Method for Distribution Network Based on Incomplete Measurement Data [J]. Electric Power, 2025, 58(5): 1-10. |
[2] | FAN Huicong, DUAN Zhiguo, CHEN Zhiyong, ZHU Shijia, LIU Hang, LI Wenxiao, YANG Yang. Two-layer Optimization Scheduling for Off-grid Microgrids Based on Multi-agent Deep Policy Gradient [J]. Electric Power, 2025, 58(5): 11-20, 32. |
[3] | SHEN Xin, WANG Gang, ZHAO Yitao, LUO Zhao, LI Zhao, YANG Xiaohua. A Non-invasive Load Recognition Approach Incorporating SENet Attention Mechanism and GA-CNN [J]. Electric Power, 2025, 58(5): 33-42. |
[4] | WANG Li, JIANG Yuxiang, ZENG Xiangjun, ZHAO Bin, LI Junhao. Secondary Frequency Control of Islanded Microgrid Based on Deep Reinforcement Learning [J]. Electric Power, 2025, 58(5): 176-188. |
[5] | JI Zhanyang, HU Yang, KONG Lingxing, SONG Ziqiu, DENG Dan, LIU Jizhen. Dynamic Modeling and Simulation of Wind Turbine Unit Primary Frequency Regulation Considering Multi-domain Coupling Characteristics [J]. Electric Power, 2025, 58(4): 56-67. |
[6] | Yi ZENG, Yi ZHOU, Jixiang LU, Liangcai ZHOU, Ningkai TANG, Hong LI. Voltage Control Based on Multi-Agent Safe Deep Reinforcement Learning [J]. Electric Power, 2025, 58(2): 111-117. |
[7] | Xiaozhong WU, Lihua XIAO, Chao TONG, Xiangyang XIA, Ling YUAN, Xing GAN, Zhiwen JIANG, Xiangyuan HUANG. Capacity Prediction Model of Lithium-Ion Batteries Based on Transfer Entropy and JS-BP Neural Network [J]. Electric Power, 2025, 58(2): 186-192, 215. |
[8] | Yufei WANG, Tong DU, Weiguo BIAN, Zhao ZHANG, Huiting LIU, Lijun YANG. Short-term Load Forecasting Based on DTW K-medoids and VMD Multi-branch Neural Network for Multiple Users [J]. Electric Power, 2024, 57(6): 121-130. |
[9] | Bilin SHAO, Danyang JI. Multi-feature Short-term Prediction of Power Load Components Based on VMD-SE [J]. Electric Power, 2024, 57(4): 162-170. |
[10] | Siyang CHEN, Li HAN, Jizhong FANG, Wuhang DING, Cheng CHENG, Wen LI, Yuan ZHANG, Yong QIAN. Prediction Method for Carbon Storage in Substation Based on Uncertain Parameters [J]. Electric Power, 2024, 57(4): 200-210. |
[11] | Qihe LOU, Rongsheng LI, Jie TAN, Tiejiang YUAN. Calculation of Transient Stability Limit Based on Convolutional Neural Network [J]. Electric Power, 2024, 57(4): 211-219. |
[12] | Rukuo MA, Jie DONG, Yatian WANG, Guoxin YI, Xianghao DING, Le MA. Neural Network-based CF4 and SF6/CF4 Detection in High Altitude and Extreme Cold Regions [J]. Electric Power, 2024, 57(3): 103-112. |
[13] | Jie YAN, Jialin YANG, Hangyu WANG, Jiaoyang LU, Yongqian LIU, Lei ZHANG. Offshore Wind Farm Wake Deflection Control Based on Adaptive Wind Condition Prediction Error [J]. Electric Power, 2024, 57(3): 190-196. |
[14] | Zhuo LI, Yinzhe WANG, Lin YE, Yadi LUO, Xuri SONG, Zhenyu ZHANG. The Application of Graph Neural Networks in Power Systems from Perspective of Perception-Prediction-Optimization [J]. Electric Power, 2024, 57(12): 2-16. |
[15] | Qingbin CHEN, Genghuang YANG, Liqing GENG, Juan SU, Jingsheng SUN. Short Term Photovoltaic Power Combination Prediction Method Based on Similar Day Selection and Data Reconstruction [J]. Electric Power, 2024, 57(12): 71-81. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 54
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 47
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||