1 |
CRESSAULT Y, CONNORD V, HINGANA H, et al. Transport properties of CF3I thermal plasmas mixed with CO2, air or N2 as an alternative to SF6 plasmas in high-voltage circuit breakers[J]. Journal of Physics D:Applied Physics, 2011, 44 (49): 495202.
DOI
|
2 |
张咪, 高克利, 侯华, 等. SF6替代绝缘气体的虚拟筛选与分子设计综述[J]. 高电压技术, 2023, 49 (7): 2816- 2830.
|
|
ZHANG Mi, GAO Keli, HOU Hua, et al. Review on computational screening and molecular design of replacement gases for SF6[J]. High Voltage Engineering, 2023, 49 (7): 2816- 2830.
|
3 |
张智刚, 康重庆. 碳中和目标下构建新型电力系统的挑战与展望[J]. 中国电机工程学报, 2022, 42 (8): 2806- 2818, S1.
|
|
ZHANG Zhigang, KANG Chongqing. Challenges and prospects for constructing the new-type power system towards a carbon neutrality future[J]. Proceedings of the CSEE, 2022, 42 (8): 2806- 2818, S1.
|
4 |
彭静, 王军, 亓富军, 等. “双碳” 目标下配电网多阶段扩展规划[J]. 电力系统保护与控制, 2022, 50 (7): 153- 161.
|
|
PENG Jing, WANG Jun, QI Fujun, et al. Multi-stage expansion planning of a distribution network with double-carbon policy[J]. Power System Protection and Control, 2022, 50 (7): 153- 161.
|
5 |
王延峰, 申永鹏, 唐耀华, 等. 双碳目标下NB-IoT能源物联网安全构架及关键技术[J]. 电力系统保护与控制, 2022, 50 (8): 179- 187.
|
|
WANG Yanfeng, SHEN Yongpeng, TANG Yaohua, et al. Framework and key technologies for NB-IoT energy Internet of Things to achieve carbon peak and neutrality goals[J]. Power System Protection and Control, 2022, 50 (8): 179- 187.
|
6 |
童光毅. 基于双碳目标的智慧能源体系构建[J]. 智慧电力, 2021, 49 (5): 1- 6.
|
|
TONG Guangyi. Construction of smart energy system based on dual carbon goal[J]. Smart Power, 2021, 49 (5): 1- 6.
|
7 |
任大伟, 侯金鸣, 肖晋宇, 等. 支撑双碳目标的新型储能发展潜力及路径研究[J]. 中国电力, 2023, 56 (8): 17- 25.
|
|
REN Dawei, HOU Jinming, XIAO Jinyu, et al. Research on development potential and path of new energy storage supporting carbon peak and carbon neutrality[J]. Electric Power, 2023, 56 (8): 17- 25.
|
8 |
张逸豪, 王振雷. 基于最大信息系数的分组支持向量数据描述故障检测[J/OL]. 化工学报, 2023: 1–21. (2023-08-25).https://kns.cnki.net/kcms/detail/11.1946.tq.20230824.1808.006.html.
|
|
ZHANG Yihao, WANG Zhenlei. Fault detection using grouped support vector data description based on maximum information coefficient[J/OL]. CIESC Journal, 2023: 1–21. (2023-08-25).https://kns.cnki.net/kcms/detail/11.1946.tq.20230824.1808.006.html.
|
9 |
任佳, 孙思宇, 鲍克. 基于最大信息系数和深度残差图卷积的工业过程故障诊断方法[J]. 高校化学工程学报, 2023, 37 (1): 111- 119.
|
|
REN Jia, SUN Siyu, BAO Ke. Fault diagnosis method in industrial processes based on maximal information coefficient and depth residual graph convolution[J]. Journal of Chemical Engineering of Chinese Universities, 2023, 37 (1): 111- 119.
|
10 |
赵帅, 宋冰, 侍洪波. 基于加权互信息主元分析算法的质量相关故障检测[J]. 化工学报, 2018, 69 (3): 962- 973.
|
|
ZHAO Shuai, SONG Bing, SHI Hongbo. Quality-related fault detection based on weighted mutual information principal component analysis[J]. CIESC Journal, 2018, 69 (3): 962- 973.
|
11 |
周威振, 马越, 邓集瀚, 等. 基于图像分析的气体继电器积气体积辨识及自动取气方法[J]. 南方电网技术, 2023, 17 (9): 112- 119, 150.
|
|
ZHOU Weizhen, MA Yue, DENG Jihan, et al. Image analysis-based gas volume identification and gas automatic collection of gas relay[J]. Southern Power System Technology, 2023, 17 (9): 112- 119, 150.
|
12 |
郭志瑞. 基于BP神经网络的启动子序列的预测分析[D]. 重庆: 重庆大学, 2020.
|
|
GUO Zhirui. Prediction and analysis of promoter sequences based on BP neural network[D]. Chongqing: Chongqing University, 2020.
|
13 |
吕品, 左金宝, 倪小军. 基于BP神经网络的矿井淋水井筒风温预测[J]. 煤矿安全, 2008, 39 (12): 11- 13.
|
|
LV Pin, ZUO Jinbao, NI Xiaojun. BP neural network for predicting air temperature of watering well in mine[J]. Safety in Coal Mines, 2008, 39 (12): 11- 13.
|
14 |
朱历新, 周竞涛, 高俊杰, 等. 基于神经网络的工时定额技术研究[J]. 机械科学与技术, 2004, 23 (6): 702- 704,747.
|
|
ZHU Lixin, ZHOU Jingtao, GAO Junjie, et al. A study on the development of man-hour ration based on artificial neural networks[J]. Mechanical Science and Technology for Aerospace Engineering, 2004, 23 (6): 702- 704,747.
|
15 |
周中, 邓卓湘, 陈云, 等. 基于GA-BP神经网络的泡沫轻质土强度预测[J]. 华南理工大学学报(自然科学版), 2022, 50 (11): 125- 132.
|
|
ZHOU Zhong, DENG Zhuoxiang, CHEN Yun, et al. Strength prediction of foam light soil based on GA-BP neural network[J]. Journal of South China University of Technology (Natural Science Edition), 2022, 50 (11): 125- 132.
|
16 |
陈明. MATLAB神经网络原理与实例精解[M]. 北京: 清华大学出版社, 2013.
|
17 |
杨桢, 马钰超, 李丽, 等. 基于HHT和GA-BP的电压暂降源定位方法[J]. 中国电力, 2022, 55 (3): 97- 104.
|
|
YANG Zhen, MA Yuchao, LI Li, et al. A novel method for voltage sag source location based on HHT and GA-BP[J]. Electric Power, 2022, 55 (3): 97- 104.
|
18 |
刘伟吉, 冯嘉豪, 祝效华, 等. 基于动量自适应学习率PSO-BP神经网络的钻速预测模型研究[J]. 科学技术与工程, 2023, 23 (24): 10264- 10272.
|
|
LIU Weiji, FENG Jiahao, ZHU Xiaohua, et al. Prediction model of penetration rate based on PSO-BP neural network with momentum adaptive learning rate[J]. Science Technology and Engineering, 2023, 23 (24): 10264- 10272.
|
19 |
王彤彤, 张剑, 涂川, 等. IPSO-BP神经网络在渭河天水段水质评价中的应用[J]. 环境科学与技术, 2013, 36 (8): 175- 181.
|
|
WANG Tongtong, ZHANG Jian, TU Chuan, et al. Application of IPSO-BP neural network in water quality evaluation for Tianshui section of Wei River[J]. Environmental Science & Technology, 2013, 36 (8): 175- 181.
|
20 |
甘智超, 郭硕昌, 陶盈盈, 等. 基于PCA-BP神经网络的管道内壁几何形状识别[J]. 固体力学学报, 2023, 44 (5): 622- 636.
|
|
GAN Zhichao, GUO Shuochang, TAO Yingying, et al. Identification of pipeline inner wall geometry based on the PCA-BP neural network[J]. Chinese Journal of Solid Mechanics, 2023, 44 (5): 622- 636.
|
21 |
王栋, 张江石, 张琪, 等. 基于HPO-BP神经网络的隧道粉尘处理预测模型[J]. 工业建筑, 2023, 53 (S1): 561- 564,574.
|
22 |
NARUEI I, KEYNIA F, SABBAGH MOLAHOSSEINI A. Hunter–prey optimization: algorithm and applications[J]. Soft Computing, 2022, 26 (3): 1279- 1314.
DOI
|
23 |
朱文广, 李映雪, 杨为群, 等. 基于K-折交叉验证和Stacking融合的短期负荷预测[J]. 电力科学与技术学报, 2021, 36 (1): 87- 95.
|
|
ZHU Wenguang, LI Yingxue, YANG Weiqun, et al. Short-term load forecasting based on the K-fold cross-validation and Stacking ensemble[J]. Journal of Electric Power Science and Technology, 2021, 36 (1): 87- 95.
|
24 |
郑焕坤, 曾凡斐, 傅钰, 等. 基于E-C-K-均值聚类和SOP优化的分布式电源双层规划[J]. 太阳能学报, 2022, 43 (2): 127- 135.
|
|
ZHENG Huankun, ZENG Fanfei, FU Yu, et al. Bi-level distributed power planning based on E-C-K-means clustering and SOP optimization[J]. Acta Energiae Solaris Sinica, 2022, 43 (2): 127- 135.
|
25 |
赵源上, 林伟芳. 基于皮尔逊相关系数融合密度峰值和熵权法典型场景研究[J]. 中国电力, 2023, 56 (5): 193- 202.
|
|
ZHAO Yuanshang, LIN Weifang. Research on typical scenarios based on fusion density peak value and entropy weight method of Pearson's correlation coefficient[J]. Electric Power, 2023, 56 (5): 193- 202.
|