| 1 |
周强, 汪宁渤, 冉亮, 等. 中国新能源弃风弃光原因分析及前景探究[J]. 中国电力, 2016, 49 (9): 7- 12, 159.
|
|
ZHOU Qiang, WANG Ningbo, RAN Liang, et al. Cause analysis on wind and photovoltaic energy curtailment and prospect research in China[J]. Electric Power, 2016, 49 (9): 7- 12, 159.
|
| 2 |
李岳. 暂态稳定约束的极限传输能力的快速求取方法研究[D]. 北京: 华北电力大学, 2011.
|
|
LI Yue. Research on the fast calculating method of transient stability constrained power transfer limits[D]. Beijing: North China Electric Power University, 2011.
|
| 3 |
和敬涵, 罗国敏, 程梦晓, 等. 新一代人工智能在电力系统故障分析及定位中的研究综述[J]. 中国电机工程学报, 2020, 40 (17): 5506- 5516.
|
|
HE Jinghan, LUO Guomin, CHENG Mengxiao, et al. A research review on application of artificial intelligence in power system fault analysis and location[J]. Proceedings of the CSEE, 2020, 40 (17): 5506- 5516.
|
| 4 |
李永康, 刘宝柱, 胡俊杰. 基于数据驱动与时域仿真融合的电力系统暂态稳定快速评估[J]. 电网技术, 2023, 47 (11): 4386- 4396.
|
|
LI Yongkang, LIU Baozhu, HU Junjie. Rapid evaluation of power system transient stability based on fusion of data-driven and time-domain simulation[J]. Power System Technology, 2023, 47 (11): 4386- 4396.
|
| 5 |
胡伟, 郑乐, 闵勇, 等. 基于深度学习的电力系统故障后暂态稳定评估研究[J]. 电网技术, 2017, 41 (10): 3140- 3146.
|
|
HU Wei, ZHENG Le, MIN Yong, et al. Research on power system transient stability assessment based on deep learning of big data technique[J]. Power System Technology, 2017, 41 (10): 3140- 3146.
|
| 6 |
王国政, 郭剑波, 马士聪, 等. 电力系统增强智能分析初探[J]. 中国电机工程学报, 2020, 40 (16): 5079- 5088.
|
|
WANG Guozheng, GUO Jianbo, MA Shicong, et al. Preliminary study of power system enhanced intelligence analysis[J]. Proceedings of the CSEE, 2020, 40 (16): 5079- 5088.
|
| 7 |
汤奕, 崔晗, 李峰, 等. 人工智能在电力系统暂态问题中的应用综述[J]. 中国电机工程学报, 2019, 39 (1): 2- 13, 315.
|
|
TANG Yi, CUI Han, LI Feng, et al. Review on artificial intelligence in power system transient stability analysis[J]. Proceedings of the CSEE, 2019, 39 (1): 2- 13, 315.
|
| 8 |
田鹏飞, 于游, 董明, 等. 基于CNN-SVM的高压输电线路故障识别方法[J]. 电力系统保护与控制, 2022, 50 (13): 119- 125.
|
|
TIAN Pengfei, YU You, DONG Ming, et al. A CNN-SVM-based fault identification method for high-voltage transmission lines[J]. Power System Protection and Control, 2022, 50 (13): 119- 125.
|
| 9 |
杨胡萍, 余阳, 汪超, 等. 基于VMD-CNN-BIGRU的电力系统短期负荷预测[J]. 中国电力, 2022, 55 (10): 71- 76.
|
|
YANG Huping, YU Yang, WANG Chao, et al. Short-term load forecasting of power system based on VMD-CNN-BIGRU[J]. Electric Power, 2022, 55 (10): 71- 76.
|
| 10 |
高正男, 杨帆, 胡姝博, 等. 面向新能源电力系统状态估计的伪波动数据清洗[J]. 高电压技术, 2022, 48 (6): 2366- 2377.
|
|
GAO Zhengnan, YANG Fan, HU Shubo, et al. Pseudo-fluctuation data cleaning for state estimation of new energy power system[J]. High Voltage Engineering, 2022, 48 (6): 2366- 2377.
|
| 11 |
曾囿钧, 肖先勇, 徐方维, 等. 基于CNN-BiGRU-NN模型的短期负荷预测方法[J]. 中国电力, 2021, 54 (9): 17- 23.
|
|
ZENG Youjun, XIAO Xianyong, XU Fangwei, et al. A short-term load forecasting method based on CNN-BiGRU-NN model[J]. Electric Power, 2021, 54 (9): 17- 23.
|
| 12 |
何成兵, 王润泽, 张霄翔. 基于改进一维卷积神经网络的汽轮发电机组轴系扭振模态参数辨识[J]. 中国电机工程学报, 2020, 40 (S1): 195- 203.
|
|
HE Chengbing, WANG Runze, ZHANG Xiaoxiang. Identification of torsional mode parameters of shaft system of turbo turbine generator sets based on improved one-dimensional convolutional neural network[J]. Proceedings of the CSEE, 2020, 40 (S1): 195- 203.
|
| 13 |
贾睿, 杨国华, 郑豪丰, 等. 基于自适应权重的CNN-LSTM&GRU组合风电功率预测方法[J]. 中国电力, 2022, 55 (5): 47- 56, 110.
|
|
JIA Rui, YANG Guohua, ZHENG Haofeng, et al. Combined wind power prediction method based on CNN-LSTM & GRU with adaptive weights[J]. Electric Power, 2022, 55 (5): 47- 56, 110.
|
| 14 |
周艳真, 吴俊勇, 冀鲁豫, 等. 基于两阶段支持向量机的电力系统暂态稳定预测及预防控制[J]. 中国电机工程学报, 2018, 38 (1): 137- 147, 350.
|
|
ZHOU Yanzhen, WU Junyong, JI Luyu, et al. Two-stage support vector machines for transient stability prediction and preventive control of power systems[J]. Proceedings of the CSEE, 2018, 38 (1): 137- 147, 350.
|
| 15 |
张若愚. 基于卷积神经网络的电力系统暂态稳定评估[D]. 北京: 北京交通大学, 2020.
|
|
ZHANG Ruoyu. Power system transient stability assessment based on convolution neural network [D]. Beijing: Beijing Jiaotong University, 2020.
|
| 16 |
时纯, 刘君, 梁卓航, 等. 基于GAN和多通道CNN的电力系统暂态稳定评估[J]. 电网技术, 2022, 46 (8): 3191- 3202.
|
|
SHI Chun, LIU Jun, LIANG Zhuohang, et al. Transient stability assessment of power system based on GAN and multi-channel CNN[J]. Power System Technology, 2022, 46 (8): 3191- 3202.
|
| 17 |
高昆仑, 杨帅, 刘思言, 等. 基于一维卷积神经网络的电力系统暂态稳定评估[J]. 电力系统自动化, 2019, 43 (12): 18- 26.
|
|
GAO Kunlun, YANG Shuai, LIU Siyan, et al. Transient stability assessment for power system based on one-dimensional convolutional neural network[J]. Automation of Electric Power Systems, 2019, 43 (12): 18- 26.
|
| 18 |
李楠, 朱嫄, 崔莹. 考虑代价敏感的AC-LSTM暂态稳定评估[J]. 电力系统保护与控制, 2022, 50 (22): 160- 169.
|
|
LI Nan, ZHU Yuan, CUI Ying. AC-LSTM transient stability assessment considering cost-sensitivity[J]. Power System Protection and Control, 2022, 50 (22): 160- 169.
|
| 19 |
孙黎霞, 白景涛, 周照宇, 等. 基于双向长短期记忆网络的电力系统暂态稳定评估[J]. 电力系统自动化, 2020, 44 (13): 64- 72.
|
|
SUN Lixia, BAI Jingtao, ZHOU Zhaoyu, et al. Transient stability assessment of power system based on bi-directional long-short-term memory network[J]. Automation of Electric Power Systems, 2020, 44 (13): 64- 72.
|
| 20 |
吴思婕, 王怀远. 基于集成学习的时间自适应电力系统暂态稳定评估方法[J]. 电力系统保护与控制, 2022, 50 (24): 112- 119.
|
|
WU Sijie, WANG Huaiyuan. Transient stability assessment of power system with time-adaptive method based on ensemble learning[J]. Power System Protection and Control, 2022, 50 (24): 112- 119.
|
| 21 |
苏童, 刘友波, 沈晓东, 等. 深度学习驱动的电力系统暂态稳定预防控制进化算法[J]. 中国电机工程学报, 2020, 40 (12): 3813- 3824.
|
|
SU Tong, LIU Youbo, SHEN Xiaodong, et al. Deep learning-driven evolutionary algorithm for preventive control of power system transient stability[J]. Proceedings of the CSEE, 2020, 40 (12): 3813- 3824.
|
| 22 |
邵美阳, 吴俊勇, 李宝琴, 等. 基于两阶段集成深度置信网络的电力系统暂态稳定评估[J]. 电网技术, 2020, 44 (5): 1776- 1787.
|
|
SHAO Meiyang, WU Junyong, LI Baoqin, et al. Transient stability assessment of power system based on two-stage ensemble deep belief network[J]. Power System Technology, 2020, 44 (5): 1776- 1787.
|
| 23 |
朱乔木, 党杰, 陈金富, 等. 基于深度置信网络的电力系统暂态稳定评估方法[J]. 中国电机工程学报, 2018, 38 (3): 735- 743.
|
|
ZHU Qiaomu, DANG Jie, CHEN Jinfu, et al. A method for power system transient stability assessment based on deep belief networks[J]. Proceedings of the CSEE, 2018, 38 (3): 735- 743.
|
| 24 |
赵恺, 石立宝. 基于改进一维卷积神经网络的电力系统暂态稳定评估[J]. 电网技术, 2021, 45 (8): 2945- 2957.
|
|
ZHAO Kai, SHI Libao. Transient stability assessment of power system based on improved one-dimensional convolutional neural network[J]. Power System Technology, 2021, 45 (8): 2945- 2957.
|
| 25 |
田芳, 周孝信, 史东宇, 等. 基于卷积神经网络的电力系统暂态稳定预防控制方法[J]. 电力系统保护与控制, 2020, 48 (18): 1- 8.
|
|
TIAN Fang, ZHOU Xiaoxin, SHI Dongyu, et al. A preventive control method of power system transient stability based on a convolutional neural network[J]. Power System Protection and Control, 2020, 48 (18): 1- 8.
|