Electric Power ›› 2022, Vol. 55 ›› Issue (7): 163-171.DOI: 10.11930/j.issn.1004-9649.202112009
• New Energy • Previous Articles Next Articles
FENG Yuqi1, LI Hui1,2, LI Lijuan1, ZHOU Yanbo1, TAN Mao1, PENG Hanmei1
Received:
2021-12-09
Revised:
2022-04-27
Online:
2022-07-28
Published:
2022-07-20
Supported by:
FENG Yuqi, LI Hui, LI Lijuan, ZHOU Yanbo, TAN Mao, PENG Hanmei. Voltage Trajectory Prediction of Photovoltaic Power Station Based on CNN-GRU[J]. Electric Power, 2022, 55(7): 163-171.
[1] 丁明, 王伟胜, 王秀丽, 等. 大规模光伏发电对电力系统影响综述[J]. 中国电机工程学报, 2014, 34(1): 1–14 DING Ming, WANG Weisheng, WANG Xiuli, et al. A review on the effect of large-scale PV generation on power systems[J]. Proceedings of the CSEE, 2014, 34(1): 1–14 [2] 邵振国,许昊铂,肖颂勇. 新能源电网中的谐波问题[J]. 电力系统保护与控制, 2021, 49(4): 178–187 SHAO Zhenguo, XU Haobo, XIAO Songyong, et al. Harmonic problems in a new energy power grid[J]. Power System Protection and Control, 2021, 49(4): 178–187 [3] 邹鹏辉,张治,张显立. 高渗透率分布式光伏系统谐波与电压控制[J]. 智慧电力, 2020, 48(12): 40–45 ZOU Penghui, ZHANG Zhi, ZHANG Xianli. Harmonic and voltage control of distributed photovoltaic system with high permeability[J]. Smart Power, 2020, 48(12): 40–45 [4] 李辉, 王梦思, 李帅虎, 等. 基于态势利导的同步逆变器负序电流抑制方法[J]. 电力系统自动化, 2018, 42(9): 141–148,179 LI Hui, WANG Mengsi, LI Shuaihu, et al. Situation orientation based suppression method of negative sequence current for synchronverter[J]. Automation of Electric Power Systems, 2018, 42(9): 141–148,179 [5] AMINI M H, KARGARIAN A, KARABASOGLU O. ARIMA-based decoupled time series forecasting of electric vehicle charging demand for stochastic power system operation[J]. Electric Power Systems Research, 2016, 140: 378–390. [6] JIANG H G, ZHANG Y C, MULJADI E, et al. A short-term and high-resolution distribution system load forecasting approach using support vector regression with hybrid parameters optimization[J]. IEEE Transactions on Smart Grid, 2018, 9(4): 3341–3350. [7] 丁泽俊, 刘平, 欧阳森, 等. 电能质量预测与预警机制及其应用[J]. 电力系统及其自动化学报, 2015, 27(10): 87–92 DING Zejun, LIU Ping, OUYANG Sen, et al. Mechanism of power quality forecast and early warning and their application[J]. Proceedings of the CSU-EPSA, 2015, 27(10): 87–92 [8] 林顺富, 汤继开, 汤波, 等. 典型电能质量稳态指标预测模型研究[J]. 电网技术, 2018, 42(2): 614–620 LIN Shunfu, TANG Jikai, TANG Bo, et al. Study on forecasting model of typical power quality steady state indices[J]. Power System Technology, 2018, 42(2): 614–620 [9] VANTUCH T, MI?áK S, JE?OWICZ T, et al. The power quality forecasting model for off-grid system supported by multiobjective optimization[J]. IEEE Transactions on Industrial Electronics, 2017, 64(12): 9507–9516. [10] 卢珏, 孙云莲, 谢信霖, 等. 基于改进组合预测的电能质量预警研究[J]. 电工电能新技术, 2020, 39(9): 65–73 LU Jue, SUN Yunlian, XIE Xinlin, et al. Research on power quality early warning based on improved combined forecasting[J]. Advanced Technology of Electrical Engineering and Energy, 2020, 39(9): 65–73 [11] 贾睿, 杨国华, 郑豪丰, 等. 基于自适应权重的CNN-LSTM&GRU组合风电功率预测方法[J]. 中国电力, 2022, 55(5): 47–56,110 JIA Rui, YANG Guohua, ZHENG Haofeng, et al. Combined wind power prediction method based on CNN-LSTM&GRU of adaptive weight[J]. Electric Power, 2022, 55(5): 47–56,110 [12] MANSOURI V, AKBARI M E. Efficient short- term electricity load forecasting using recurrent neural networks[J]. Journal of Artificial Intelligence in Electrical Engineering, 2014, 3(9): 46–54. [13] SHI H, XU M H, LI R. Deep learning for household load forecasting—A novel pooling deep RNN[J]. IEEE Transactions on Smart Grid, 2018, 9(5): 5271–5280.[LinkOut]. [14] KONG W C, DONG Z Y, JIA Y W, et al. Short-term residential load forecasting based on LSTM recurrent neural network[J]. IEEE Transactions on Smart Grid, 2019, 10(1): 841–851. [15] 李鹏, 何帅, 韩鹏飞, 等. 基于长短期记忆的实时电价条件下智能电网短期负荷预测[J]. 电网技术, 2018, 42(12): 4045–4052 LI Peng, HE Shuai, HAN Pengfei, et al. Short-term load forecasting of smart grid based on long-short-term memory recurrent neural networks in condition of real-time electricity price[J]. Power System Technology, 2018, 42(12): 4045–4052 [16] 史佳琪, 张建华. 基于多模型融合Stacking集成学习方式的负荷预测方法[J]. 中国电机工程学报, 2019, 39(14): 4032–4042 SHI Jiaqi, ZHANG Jianhua. Load forecasting based on multi-model by stacking ensemble learning[J]. Proceedings of the CSEE, 2019, 39(14): 4032–4042 [17] 栗然, 马涛, 张潇, 等. 基于卷积长短期记忆神经网络的短期风功率预测[J]. 太阳能学报, 2021, 42(6): 304–311 LI Ran, MA Tao, ZHANG Xiao, et al. Short-term wind power prediction based on convolutional long-short-term memory neural networks[J]. Acta Energiae Solaris Sinica, 2021, 42(6): 304–311 [18] 翁国庆, 龚阳光, 舒俊鹏, 等. 基于聚类LSTM深度学习模型的主动配电网电能质量预测[J]. 高技术通讯, 2020, 30(7): 687–697 WENG Guoqing, GONG Yangguang, SHU Junpeng, et al. Power quality prediction of active distribution network based on clustering LSTM deep learning model[J]. Chinese High Technology Letters, 2020, 30(7): 687–697 [19] 杨朝赟, 夏圣峰, 江南, 等. 基于相关性分析和长短时记忆网络的稳态电压质量指标预测[J]. 电力建设, 2021, 42(4): 9–16 YANG Chaoyun, XIA Shengfeng, JIANG Nan, et al. Prediction of steady-state indices of voltage quality based on correlation analysis and long short-term memory network[J]. Electric Power Construction, 2021, 42(4): 9–16 [20] 曾囿钧, 肖先勇, 徐方维, 等. 基于CNN-BiGRU-NN模型的短期负荷预测方法[J]. 中国电力, 2021, 54(9): 17–23 ZENG Youjun, XIAO Xianyong, XU Fangwei, et al. A short-term load forecasting method based on CNN-BiGRU-NN model[J]. Electric Power, 2021, 54(9): 17–23 [21] 庄家懿, 杨国华, 郑豪丰, 等. 基于多模型融合的CNN-LSTM-XGBoost短期电力负荷预测方法[J]. 中国电力, 2021, 54(5): 46–55 ZHUANG Jiayi, YANG Guohua, ZHENG Haofeng, et al. Short-term load forecasting method based on multi-model fusion using CNN-LSTM-XGBoost framework[J]. Electric Power, 2021, 54(5): 46–55 [22] 姚程文, 杨苹, 刘泽健. 基于CNN-GRU混合神经网络的负荷预测方法[J]. 电网技术, 2020, 44(9): 3416–3424 YAO Chengwen, YANG Ping, LIU Zejian. Load forecasting method based on CNN-GRU hybrid neural network[J]. Power System Technology, 2020, 44(9): 3416–3424 [23] 王增平, 赵兵, 纪维佳, 等. 基于GRU-NN模型的短期负荷预测方法[J]. 电力系统自动化, 2019, 43(5): 53–58 WANG Zengping, ZHAO Bing, JI Weijia, et al. Short-term load forecasting method based on GRU-NN model[J]. Automation of Electric Power Systems, 2019, 43(5): 53–58 [24] ZHOU B W, MA X J, LUO Y H, et al. Wind power prediction based on LSTM networks and nonparametric kernel density estimation[J]. IEEE Access, 2019, 7: 165279–165292. [25] RESHEF D N, RESHEF Y A, FINUCANE H K, et al. Detecting novel associations in large data sets[J]. Science, 2011, 334(6062): 1518–1524. [26] TAN M, YUAN S P, LI S H, et al. Ultra-short-term industrial power demand forecasting using LSTM based hybrid ensemble learning[J]. IEEE Transactions on Power Systems, 2020, 35(4): 2937–2948. |
[1] | Jiandong WO, Wulue PAN, Yuehui LI, Jiayi WU. New Solution for Photovoltaic Station Collector Line Protection Based on Comprehensive Harmonic Drive [J]. Electric Power, 2025, 58(2): 133-139. |
[2] | Junying WU, Xin LU, Hong LIU, Bin ZHANG, Shouliang CHAI, Yunchun LIU, Jianan WANG. Ultra-short-term Multi-region Power Load Forecasting Based on Spearman-GCN-GRU Model [J]. Electric Power, 2024, 57(6): 131-140. |
[3] | Muyu ZHU, Hongzhong MA, Pengyu GUO, Wenjing XUAN. State of Charge Estimation of Energy Storage Battery Pack under Typical Peak/Frequency Modulation Conditions [J]. Electric Power, 2024, 57(6): 18-26. |
[4] | Guohua YANG, Xin QI, Rui JIA, Yifeng LIU, Fei MENG, Xin MA, Xiaowen XING. Short-Term Wind Power Forecast Based on CNN&LSTM-GRU Model Integrated with CEEMD-SE Algorithm [J]. Electric Power, 2024, 57(2): 55-61. |
[5] | Nian ZOU, Meifang WEI, Sheng SU, Yingjun ZHENG, Wenqing ZHOU. Detection of Electricity Theft by Low Voltage Users with Zero Power Consumption Based on Water-Electricity Correlation Information [J]. Electric Power, 2023, 56(12): 206-216. |
[6] | E Zhijun, LI Zhenbin, YANG Bangyu, LIU Wei, YAO Weiping. Simulation Initialization Method for AC/DC Hybrid Power Grid [J]. Electric Power, 2022, 55(8): 178-183. |
[7] | ZHENG Haofeng, YANG Guohua, KANG Wenjun, LIU Zhiyuan, LIU Shitao, WU Hong, ZHANG Honghao. Load Forecasting Based on Multiple Load Features and TCN-GRU Neural Network [J]. Electric Power, 2022, 55(11): 142-148. |
[8] | YANG Huping, YU Yang, WANG Chao, LI Xiangjun, HU Yitao, RAO Chuchu. Short-Term Load Forecasting of Power System Based on VMD-CNN-BIGRU [J]. Electric Power, 2022, 55(10): 71-76. |
[9] | ZENG Youjun, XIAO Xianyong, XU Fangwei, ZHENG Lin. A Short-Term Load Forecasting Method Based on CNN-BiGRU-NN Model [J]. Electric Power, 2021, 54(9): 17-23. |
[10] | ZUO Gao, ZHANG Chao, CHEN Yuchun, YU Haibo, LU Yudong. Comprehensive Evaluation of Operation and Maintenance of Distributed Photovoltaic Power Based on Interval Intuitionistic Fuzzy Group Decision [J]. Electric Power, 2021, 54(8): 154-163. |
[11] | WANG Jifei, WANG Yongxing, YANG Yujing, WANG Yanping. Analysis the Impact of Photovoltaic Power Station's Integration into Rural Distribution Network [J]. Electric Power, 2018, 51(6): 150-154. |
[12] | MENG Zhaojun, XU Xiaotong, WU Feng, WANG Haichao. he Research on the Equivalence of Non-uniform Illumination Intensity [J]. journal1, 2015, 48(9): 119-127. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||