Electric Power ›› 2025, Vol. 58 ›› Issue (3): 98-107.DOI: 10.11930/j.issn.1004-9649.202402004
Previous Articles Next Articles
Yao LIU1(), Ziheng LI2(
), Zixuan ZHENG3(
), Donghui SONG3(
), Xiaoteng LI1(
), Ding ZHANG2(
), Jie REN3(
), Qi XIE3(
)
Received:
2024-02-01
Accepted:
2024-05-01
Online:
2025-03-23
Published:
2025-03-28
Supported by:
Yao LIU, Ziheng LI, Zixuan ZHENG, Donghui SONG, Xiaoteng LI, Ding ZHANG, Jie REN, Qi XIE. An Analytical Calculation Method for Total Transfer Capability of Transmission Section Based on Evaluation of System Short Circuit Capability[J]. Electric Power, 2025, 58(3): 98-107.
Fig.3 Power-angle characteristic curve of generator under DC bipolar commutation failure interlocking before and after system equivalent reactance change
电厂 | 容量 (p.u.) | 暂态电抗 | 短路暂态时 间常数Tj(p.u.) | 直轴电抗 Xd(p.u.) | ||||
QSC电厂 | 4×10 | 0.246 | 7.760 | 1.934 | ||||
DT电厂 | 2×6.6 | 0.334 | 6.712 | 2.496 | ||||
SH电厂 | 2×6.6 | 0.300 | 7.140 | 2.080 | ||||
XF电厂 | 1×6.6 | 0.297 | 6.940 | 2.059 | ||||
QY电厂 | 2×3.5 | 0.265 | 6.240 | 2.171 | ||||
HL电厂 | 1×6.6 | 0.200 | 9.620 | 1.800 | ||||
XYJN电厂 | 2×3 | 0.223 | 5.560 | 1.800 | ||||
GJW电厂 | 2×3 | 0.202 | 6.990 | 1.800 | ||||
SQC电厂 | 2×3 | 0.229 | 5.260 | 1.800 | ||||
XWZ电厂 | 2×6 | 0.297 | 6.940 | 2.059 | ||||
YHP电厂 | 2×6 | 0.334 | 6.900 | 2.496 | ||||
FXDC电厂 | 2×10 | 0.246 | 7.760 | 1.934 | ||||
DTDC电厂 | 2×6 | 0.286 | 6.090 | 1.985 |
Table 1 Parameters of thermal power units near HVDC
电厂 | 容量 (p.u.) | 暂态电抗 | 短路暂态时 间常数Tj(p.u.) | 直轴电抗 Xd(p.u.) | ||||
QSC电厂 | 4×10 | 0.246 | 7.760 | 1.934 | ||||
DT电厂 | 2×6.6 | 0.334 | 6.712 | 2.496 | ||||
SH电厂 | 2×6.6 | 0.300 | 7.140 | 2.080 | ||||
XF电厂 | 1×6.6 | 0.297 | 6.940 | 2.059 | ||||
QY电厂 | 2×3.5 | 0.265 | 6.240 | 2.171 | ||||
HL电厂 | 1×6.6 | 0.200 | 9.620 | 1.800 | ||||
XYJN电厂 | 2×3 | 0.223 | 5.560 | 1.800 | ||||
GJW电厂 | 2×3 | 0.202 | 6.990 | 1.800 | ||||
SQC电厂 | 2×3 | 0.229 | 5.260 | 1.800 | ||||
XWZ电厂 | 2×6 | 0.297 | 6.940 | 2.059 | ||||
YHP电厂 | 2×6 | 0.334 | 6.900 | 2.496 | ||||
FXDC电厂 | 2×10 | 0.246 | 7.760 | 1.934 | ||||
DTDC电厂 | 2×6 | 0.286 | 6.090 | 1.985 |
电厂 | 提供短路容量 (p.u.) | 电厂 | 提供短路容量 (p.u.) | |||
QSC电厂 | 23.43 | FXDC电厂 | 3.94 | |||
XWZ电厂 | 17.44 | GJW电厂 | 3.35 | |||
YHP电厂 | 15.69 | QY电厂 | 3.24 | |||
XF电厂 | 13.99 | DTDC电厂 | 3.08 | |||
DT电厂 | 12.45 | XYJN电厂 | 2.85 | |||
HL电厂 | 7.83 | SQC电厂 | 2.84 | |||
SH电厂 | 7.47 |
Table 2 Sij calculation results of different units
电厂 | 提供短路容量 (p.u.) | 电厂 | 提供短路容量 (p.u.) | |||
QSC电厂 | 23.43 | FXDC电厂 | 3.94 | |||
XWZ电厂 | 17.44 | GJW电厂 | 3.35 | |||
YHP电厂 | 15.69 | QY电厂 | 3.24 | |||
XF电厂 | 13.99 | DTDC电厂 | 3.08 | |||
DT电厂 | 12.45 | XYJN电厂 | 2.85 | |||
HL电厂 | 7.83 | SQC电厂 | 2.84 | |||
SH电厂 | 7.47 |
电厂 | 开机方式1 | 开机方式2 | 开机方式3 | 开机方式4 | ||||
QSC电厂 | 4 | 3 | 3 | 4 | ||||
DT电厂 | 1 | 2 | 2 | 2 | ||||
XWZ电厂 | 2 | 2 | 2 | 2 | ||||
XF电厂 | 1 | 1 | 1 | 1 | ||||
GJW电厂 | 1 | 1 | 2 | 2 | ||||
SQC电厂 | 1 | 1 | 2 | 2 | ||||
YHP电厂 | 2 | 2 | 2 | 2 | ||||
SH电厂 | 1 | 1 | 1 | 1 | ||||
XYJN电厂 | 1 | 1 | 1 | 1 | ||||
HL电厂 | 1 | 1 | 1 | 1 | ||||
QY电厂 | 2 | 2 | 2 | 2 | ||||
FXDC电厂 | 2 | 2 | 2 | 2 | ||||
DTDC电厂 | 2 | 2 | 2 | 2 |
Table 3 Specific power grid startup mode 单位:台
电厂 | 开机方式1 | 开机方式2 | 开机方式3 | 开机方式4 | ||||
QSC电厂 | 4 | 3 | 3 | 4 | ||||
DT电厂 | 1 | 2 | 2 | 2 | ||||
XWZ电厂 | 2 | 2 | 2 | 2 | ||||
XF电厂 | 1 | 1 | 1 | 1 | ||||
GJW电厂 | 1 | 1 | 2 | 2 | ||||
SQC电厂 | 1 | 1 | 2 | 2 | ||||
YHP电厂 | 2 | 2 | 2 | 2 | ||||
SH电厂 | 1 | 1 | 1 | 1 | ||||
XYJN电厂 | 1 | 1 | 1 | 1 | ||||
HL电厂 | 1 | 1 | 1 | 1 | ||||
QY电厂 | 2 | 2 | 2 | 2 | ||||
FXDC电厂 | 2 | 2 | 2 | 2 | ||||
DTDC电厂 | 2 | 2 | 2 | 2 |
算例 | 制约故障 | 本文计算结果(p.u.) | PSASP计算结果(p.u.) | |||
1 | 交流故障 | 76.7 | 78.0 | |||
2 | 交流故障 | 75.4 | 77.0 | |||
3 | 直流故障 | 64.2 | 65.9 | |||
4 | 直流故障 | 68.3 | 69.6 |
Table 4 Calculation results of section total transfer capability
算例 | 制约故障 | 本文计算结果(p.u.) | PSASP计算结果(p.u.) | |||
1 | 交流故障 | 76.7 | 78.0 | |||
2 | 交流故障 | 75.4 | 77.0 | |||
3 | 直流故障 | 64.2 | 65.9 | |||
4 | 直流故障 | 68.3 | 69.6 |
1 | 李惠玲. 新型电力系统背景下西部送端直流电网及系统运行特性[J]. 中国电力, 2023, 56 (8): 166- 174. |
LI Huiling. Sending-terminal DC power grid in western China and its operation characteristics in the context of new power system[J]. Electric Power, 2023, 56 (8): 166- 174. | |
2 | 李帛洋, 晁璞璞, 徐式蕴等. 风电经特高压直流送出系统的暂态过电压问题研究综述[J]. 电力自动化设备, 2022, 42 (03): 26- 35. |
LI Boyang, CHAO Pupu, XU Shiyun, et al. Review on transient overvoltage issues of wind power transmission system via UHVDC[J]. Electric Power Automation Equipment, 2022, 42 (03): 26- 35. | |
3 | 周文俊, 曹毅, 李杰, 等. 考虑风电场调控裕度的风火打捆直流外送系统无功电压紧急控制策略[J]. 中国电力, 2023, 56 (4): 77- 87. |
ZHOU Wenjun, CAO Yi, LI Jie, et al. Reactive voltage emergency control strategy of wind-thermal-bundled DC transmission system considering wind farm regulation margin[J]. Electric Power, 2023, 56 (4): 77- 87. | |
4 | 曾雪洋, 刘天琪, 王顺亮, 等. 换相失败下柔性直流与传统直流互联输电系统的暂态无功协调控制策略[J]. 电力自动化设备, 2019, 39 (12): 28- 35. |
ZENG Xueyang, LIU Tianqi, WANG Shunliang, et al. Coordinated transient reactive power control strategy for transmission system connected by VSC-HVDC and LCC-HVDC under commutation failure[J]. Electric Power Automation Equipment, 2019, 39 (12): 28- 35. | |
5 | 周登钰, 张新燕, 赵理飞, 等. 含大规模风光功率汇集的多端柔性直流系统分析[J]. 太阳能学报, 2020, 41 (2): 93- 100. |
ZHOU Dengyu, ZHANG Xinyan, ZHAO Lifei, et al. Analysis of multi-terminal flexible DC system with large scale power collection[J]. Acta Energiae Solaris Sinica, 2020, 41 (2): 93- 100. | |
6 | 郭尚文. 含大规模风电光伏的弱送端系统电压特性分析及优化控制[D]. 北京: 华北电力大学, 2022. |
GUO Shangwen. Voltage characteristics analysis and optimal control of weak transmission system with large-scale wind power photovoltaic[D]. Beijing: North China Electric Power University, 2022. | |
7 | 朱子民, 张锦芳, 常清, 等. 大规模新能源接入弱同步支撑柔直系统的送端自适应VSG控制策略[J]. 中国电力, 2024, 57 (5): 211- 221. |
ZHU Zimin, ZHANG Jinfang, CHANG Qing, et al. Adaptive VSG control strategy of sending end for large-scale renewable energy connected to weakly-synchronized support VSC-HVDC system[J]. Electric Power, 2024, 57 (5): 211- 221. | |
8 | 摆世彬, 田志浩, 刘刚, 等. 考虑功角稳定与暂态过电压的新能源送端电网储能系统优化配置模型[J]. 可再生能源, 2023, 41 (7): 971- 977. |
BAI Shibin, TIAN Zhihao, LIU Gang, et al. Optimal configuration model of energy storage system for new energy sending-end power grid considering power angle stability and transient overvoltage[J]. Renewable Energy Resources, 2023, 41 (7): 971- 977. | |
9 | 徐泰山, 鲍颜红, 苏寅生, 等. 暂态稳定断面功率极限区间和关联度指标计算[J]. 电力系统自动化, 2016, 40 (20): 154- 160. |
XU Taishan, BAO Yanhong, SU Yinsheng, et al. Calculation of power limit interval and correlation degree for transient stability section[J]. Automation of Electric Power Systems, 2016, 40 (20): 154- 160. | |
10 | 杨松浩, 苏福, 张保会. 计及暂态稳定约束的断面功率调整方法研究[J]. 中国电机工程学报, 2018, 38 (9): 2531- 2539, 2821. |
YANG Songhao, SU Fu, ZHANG Baohui. Study on transient stability constrained transmission section active power flow adjustment method[J]. Proceedings of the CSEE, 2018, 38 (9): 2531- 2539, 2821. | |
11 | 彭慧敏, 马明, 郑伟, 等. 在线组合输电断面极限集群计算[J]. 电力系统保护与控制, 2012, 40 (4): 48- 53. |
PENG Huimin, MA Ming, ZHENG Wei, et al. Cluster computing mode for online transfer capability calculation[J]. Power System Protection and Control, 2012, 40 (4): 48- 53. | |
12 | 张红丽, 刘福锁, 李威, 等. 基于机组电压支撑效果的直流近区火电最小开机方法[J]. 电力系统保护与控制, 2020, 48 (23): 141- 147. |
ZHANG Hongli, LIU Fusuo, LI Wei, et al. Minimum startup method of a DC near-field thermal power unit based on a unit voltage supporting effect[J]. Power System Protection and Control, 2020, 48 (23): 141- 147. | |
13 | 牛拴保, 柯贤波, 任冲, 等. 基于短路容量量化评估的大规模新能源直流送端电网运行方式优化方法[J]. 电力自动化设备, 2021, 41 (12): 123- 129. |
NIU Shuanbao, KE Xianbo, REN Chong, et al. Optimal method of operation modes for large-scale new energy DC sending-end power grid based on short circuit capacity quantitative assessment[J]. Electric Power Automation Equipment, 2021, 41 (12): 123- 129. | |
14 | 陈祎, 郭瑞鹏, 叶琳, 等. 电网断面热稳定限额计算模型及方法[J]. 电力系统自动化, 2012, 36 (17): 20- 24. |
CHEN Yi, GUO Ruipeng, YE Lin, et al. Calculation model and method for thermal stability control limit to transmission interfaces in a power grid[J]. Automation of Electric Power Systems, 2012, 36 (17): 20- 24. | |
15 | 屠竞哲, 潘艳, 訾鹏, 等. 功角失稳与暂态过电压并存型锡盟交直流弱送端系统特性分析[J]. 电网技术, 2021, 45 (4): 1496- 1506. |
TU Jingzhe, PAN Yan, ZI Peng, et al. Ximeng AC/DC weak sending-side system characteristics with angle instability and transient overvoltage[J]. Power System Technology, 2021, 45 (4): 1496- 1506. | |
16 | 邵宝珠, 张文朝, 李家珏, 等. 基于短路容量的大规模风电弱送端直流工程电压稳定快速评估方法[J]. 可再生能源, 2018, 36 (7): 1062- 1066. |
SHAO Baozhu, ZHANG Wenchao, LI Jiajue, et al. Voltage stability and fast evaluation method for large scale wind farm weakly ended dc project based on short circuit capacity[J]. Renewable Energy Resources, 2018, 36 (7): 1062- 1066. | |
17 | 章勇高, 李小蓓, 方华亮, 等. PSASP与PSDE-SCCP短路计算的对比分析研究[J]. 电力系统保护与控制, 2019, 47 (11): 61- 70. |
ZHANG Yonggao, LI Xiaobei, FANG Hualiang, et al. Comparative analysis and study of the short-circuit calculation based on PSASP and PSDE-SCCP[J]. Power System Protection and Control, 2019, 47 (11): 61- 70. | |
18 | 张曼, 施超, 许文超, 等. 基于PSD-SCCP与PSASP的短路电流计算研究[J]. 电力工程技术, 2017, 36 (2): 88- 93. |
ZHANG Man, SHI Chao, XU Wenchao, et al. Research on calculation of short-circuit current based on PSD-SCCP and PSASP[J]. Electric Power Engineering Technology, 2017, 36 (2): 88- 93. | |
19 | 黄鹏. 基于PSASP的宁夏电网短路电流研究[D]. 北京: 华北电力大学, 2015.2015. |
HUANG Peng. Research on short-circuit current of Ningxia power grid based on PSASP[D]. Beijing: North China Electric Power University, 2015. | |
20 | 屠竞哲, 张健, 王建明, 等. 大规模直流异步互联系统受端故障引发送端稳定破坏的机理分析[J]. 中国电机工程学报, 2015, 35 (21): 5492- 5499. |
TU Jingzhe, ZHANG Jian, WANG Jianming, et al. Mechanism analysis on the sending-side instability caused by the receiving-side contingencies of large-scale HVDC asynchronous interconnected power systems[J]. Proceedings of the CSEE, 2015, 35 (21): 5492- 5499. | |
21 | 张健, 屠竞哲, 印永华, 等. 直流送受端故障对送端系统稳定性影响的对比分析及控制措施[J]. 电网技术, 2016, 40 (4): 999- 1004. |
ZHANG Jian, TU Jingzhe, YIN Yonghua, et al. Comparison analysis and countermeasures on impact of HVDC sending- and receiving-side contingencies on sending-side system stability[J]. Power System Technology, 2016, 40 (4): 999- 1004. | |
22 | 屠竞哲, 张健, 刘明松, 等. 考虑风机动态特性的大扰动暂态过电压机理分析[J]. 电力系统自动化, 2020, 44 (11): 197- 205. |
TU Jingzhe, ZHANG Jian, LIU Mingsong, et al. Mechanism analysis of transient overvoltage with large disturbance considering dynamic characteristics of wind generator[J]. Automation of Electric Power Systems, 2020, 44 (11): 197- 205. | |
23 | 张家铭. 交直流互联送端系统暂态稳定分析与控制策略研究[D]. 北京: 华北电力大学, 2022. |
ZHANG Jiaming. Research on stability analysis and control strategy of AC/DC interconnected sending end system[D]. Beijing: North China Electric Power University, 2022. | |
24 | 国家市场监督管理总局, 中国国家标准化管理委员会. 风电场接入电力系统技术规定 第1部分: 陆上风电. GB/T 19963.1—2021[P]. 2021-08-20. |
25 | 牟澎涛, 赵冬梅, 王嘉成. 大规模风电接入对系统功角稳定影响的机理分析[J]. 中国电机工程学报, 2017, 37 (5): 1325- 1334. |
MU Pengtao, ZHAO Dongmei, WANG Jiacheng. Influence mechanism analysis of large-scale wind power integration on power system angle stability[J]. Proceedings of the CSEE, 2017, 37 (5): 1325- 1334. | |
26 | 盛四清, 俞可, 张文朝, 等. 大规模风电并网对送端系统功角稳定的影响研究[J]. 电力系统保护与控制, 2022, 50 (6): 82- 90. |
SHENG Siqing, YU Ke, ZHANG Wenchao, et al. Influence of large-scale wind power grid connection on the power angle stability of the sending end system[J]. Power System Protection and Control, 2022, 50 (6): 82- 90. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||